2つのヤン・バクスター方程式の楕円関数解と楕円的量子群

两个杨-巴克斯特方程和椭圆量子群的椭圆函数解

基本信息

  • 批准号:
    10740001
  • 负责人:
  • 金额:
    $ 1.28万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
  • 财政年份:
    1998
  • 资助国家:
    日本
  • 起止时间:
    1998 至 1999
  • 项目状态:
    已结题

项目摘要

本年度は,昨年度に引き続き,加法定理型の微分方程式であるBruschi-Calogero方程式について,その解の分類に関する研究を行った。Bruschi-Calogero方程式とは次のものである。(^*) a(x)a'(y)-a'(x)a(y)=(a(x+y)-a(x)a(y))(b(x)-b(y))ここでaとbを未知関数としている。Bruschi-Calogeroは,この微分方程式の一般的な解析的解として楕円関数解を求め,その退化した解として,三角関数解,有理関数解などをも求めている。次に問題となるのは,この微分方程式の解はBruschi-Calogeroによって得られた解のみしかないのかということである。そこで研究代表者は,この微分方程式の,原点近傍で定義された有理型関数解をすべて求めようと試み,これに成功した。すなわち,本研究によって得られた新たな知見等の成果は次の通りである。aとbを原点中心のpunctured disk上定義された正則関数とする。関数aとbが微分方程式(^*)を満たすならば,aはC上定義された有理型関数となる。関数aは指数関数,楕円関数,三角関数,有理関数のいずれかで表される。本研究に関する成果は近い将来,雑誌論文として発表される予定である。また,本研究の成果の口頭発表として,平成11年9月,日本数学会秋季総合分科会無限可積分系セッションにおいて、特別講演を行った。これを記している現在,本研究の成果を用いて,ヤン・バクスター方程式の解であるR作用素の分類を行おうと試みている。
This year's work, last year's study of the differential equations of the additive rational type, the Bruschi-Calogero equation of the Bruschi-Calogero equation, the analysis of the classification of the solution, the study of the classification, and the research of the line. Bruschi-Calogero equation とは时のものである. (^*) a(x)a'(y)-a'(x)a(y)=(a(x+y)-a(x)a(y))(b(x)-b(y))ここでaとbをUnknown close numberとしている. Bruschi-Calogero は, このdifferential equation の general analytic solution と し て楕円 Off number solution を seek め, そ の degeneration し た solution と し て, triangle close number solution, rational close number solution な ど を も ask めている. The second problem is the solution of the differential equation Bruschi-Calogero.そこでRepresentative of research は, このdifferential equations の, origin proximity で definition されたrational type close number solution をすべて seek めようとtest み, これにsuccess した. This research is based on the results of this research, such as the new knowledge and insights, etc.されたregular number とする is defined on the punctured disk of aとbをorigin center. The differential equation (^*) of the pass number a and b is defined on C, and the rational type pass number is defined on a and C. The number a is an exponential number, the number is an exponent, the number is a triangle, and the number is a rational number. The results of this research are not yet in the near future, and the publication will be published in the journal.また, the oral presentation of the results of this research, として, was given in September 2011 at the Japan Mathematical Society Autumn Combined Section Meeting on Infinite Integral Systems, Special Lecture を行った.これを记しているNow, the results of this research are solved using いて, ヤン・バクスター equations and であるR Actor のclassification を行おうとtest みている.

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nariya kAWAZUMI: "The meromorphic solutions of Bruschi-Calogero equation"Publications of RIMS, Kyoto University. 36・1(in press). (2000)
Nariya kAWAZUMI:“Bruschi-Calogero 方程的亚纯解”RIMS 出版物,京都大学 36・1(出版中)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

澁川 陽一其他文献

澁川 陽一的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('澁川 陽一', 18)}}的其他基金

ダイナミカル・リフレクション写像と関連する代数の研究
动态反射映射及相关代数研究
  • 批准号:
    23K03062
  • 财政年份:
    2023
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ダイナミカル・ヤン・バクスター写像から定まる2つの代数の森田同値性
由动态 Yang-Baxter 映射确定的两个代数的 Morita 等价
  • 批准号:
    17K05187
  • 财政年份:
    2017
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Vertex-Face対応と量子代数の構成
顶点-面支持和量子代数配置
  • 批准号:
    15740001
  • 财政年份:
    2003
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
量子代数とその表現論
量子代数及其表示论
  • 批准号:
    08740003
  • 财政年份:
    1996
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
ヤン・バクスター方程式の楕円型解とそれに付随する代数の表現
Yang-Baxter方程的椭圆解及其伴随的代数表达式
  • 批准号:
    07210201
  • 财政年份:
    1995
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
ヤンバクスター方程式と量子代数
杨-巴克斯特方程和量子代数
  • 批准号:
    06740002
  • 财政年份:
    1994
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
コンプリ-トリ-でシンメトリックなRマトリックスに付随した量子代数とその表現
完全对称R矩阵的量子代数及其表达式
  • 批准号:
    05740001
  • 财政年份:
    1993
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

非線形確率微分方程式系における確率カオスの定量解析とその応用
非线性随机微分方程系统随机混沌的定量分析及其应用
  • 批准号:
    23K20814
  • 财政年份:
    2024
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
放物型偏微分方程式における動的特異性の解析
抛物型偏微分方程的动态奇异性分析
  • 批准号:
    23K22402
  • 财政年份:
    2024
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
微分方程式の適切性及び近似可解性の追究-ベクトル空間の枠をこえて-
追求微分方程的适当性和近似可解性——超越向量空间的框架——
  • 批准号:
    24K06795
  • 财政年份:
    2024
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
4階非線形放物型偏微分方程式で表される幾何学的発展方程式の解析手法の構築
四阶非线性抛物型偏微分方程几何演化方程分析方法的构建
  • 批准号:
    24K06810
  • 财政年份:
    2024
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
準線形常微分方程式の漸近解析とその偏微分方程式への応用
拟线性常微分方程的渐近分析及其在偏微分方程中的应用
  • 批准号:
    24K06808
  • 财政年份:
    2024
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
非線形偏微分方程式における解の臨界正則性と特異性
非线性偏微分方程解的临界正则性和奇异性
  • 批准号:
    23K20803
  • 财政年份:
    2024
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
非有界な係数を含む微分方程式に対する確率的均質化の定量的研究
含无界系数微分方程随机均匀化的定量研究
  • 批准号:
    24KJ1346
  • 财政年份:
    2024
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Partial differential equation: Schrodinger operator and long-time dynamics
偏微分方程:薛定谔算子和长期动力学
  • 批准号:
    FT230100588
  • 财政年份:
    2024
  • 资助金额:
    $ 1.28万
  • 项目类别:
    ARC Future Fellowships
積分相互作用付き発展方程式に対する偏微分方程式系近似の理論確立と数理解析
积分相互作用演化方程偏微分方程组逼近的理论建立与数学分析
  • 批准号:
    24K06848
  • 财政年份:
    2024
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
曲がった時空中における偏微分方程式の爆発解に関する研究
空气中偏微分方程弯曲爆炸解研究
  • 批准号:
    24K06855
  • 财政年份:
    2024
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了