ヤン・バクスター方程式の楕円型解とそれに付随する代数の表現

Yang-Baxter方程的椭圆解及其伴随的代数表达式

基本信息

  • 批准号:
    07210201
  • 负责人:
  • 金额:
    $ 1.22万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
  • 财政年份:
    1995
  • 资助国家:
    日本
  • 起止时间:
    1995 至 无数据
  • 项目状态:
    已结题

项目摘要

ここ数年、ヤン・バクスター方程式の関数空間上の解である、楕円型R作用素の満たす性質いついて研究ししている。昨年度、楕円型R作用素がvertex-face対応という性質を持つことを証明し、その後、本年度にかけてこの結果を論文にまとめた。それが「11.研究発表」に記した論文である。したがって、この論文中のほとんどの結果は昨年度中に得られたものであるが、論文末の「Note added in proof」に書いた2つの結果は、本年度になってから得られたものである。そのうちの1つは、incoming intertwining vectorにもう1つパラメータを付け加えることができるということである。これは、後に記す可換な差分作用素族を構成するときに必要となる。また、outgoing intertwining vetorが存在するということは昨年度中までに得られていたが、本年度になってその具体的な形を求められることに気が付いた。これが2つ目の結果である。これ以外に、楕円型R作用素を退化させて得られる三角関数型R作用素に付随する格子模型に関する研究を桑野泰宏・山田裕二両氏と行った。格子模型の統計力学的取り扱いに習熟していない私にとっては、大変有意義なものであった。そして、楕円型R作用素から可換な差分作用素族が構成できることもわかった。構成方法は野海正俊氏に教えてもらったものである。可換な差分作用素族の構成には別の方法がある。これに関しても簡単な場合には計算することができた。一般の場合についても、計算していきたい。以上の研究を実行する上で、パーソナルコンピューター(パワーマッキントッシュ8100)とそれに入れた計算用ソフト(マセマティカ)を利用した。このソフトでは簡単な楕円関数も扱えるので、大変役立っている。
A study on the properties of the R-type action elements in the relevant space of the equation Last year, the vertex-face relationship between the R action element and the property was proved. After that, the results of this year's study were discussed. 11. Research Report. The result of this paper is that it was obtained in the middle of last year. The result of this paper is that it was obtained in the middle of last year. The result of this paper is that it was obtained in this year.そのうちの1つは、incoming intertwining vectorにもう1つパラメータを付け加えることができるということである。The composition of the interchangeable differential action element is necessary. This year's meeting is scheduled to take place in September 2008.これが2つ目の结果である。A study on the lattice model of the interaction between the triangular R action element and the triangular R action element was carried out by Yasuhiro Yamada Lattice model of statistical mechanics to learn more about, and make sense of A family of differential action elements is composed of two elements: one element and the other element. The method of formation is to teach the wild sea is to teach. The composition of the interchangeable differential action element family is different. This is important for simple situations where calculation is required. In general, the calculation is carried out in the middle of the calculation. The above research is conducted in the following ways: This is a good idea.

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Youichi Shibukawa: "Vertex-IRF correspondence and factorized L-operators for an elliptic R-operatcr" Communications in Mathematical Physics. 172. 661-677 (1995)
Youichi Shibukawa:“椭圆 R 算子的顶点-IRF 对应和因式分解 L 算子”数学物理通信。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

澁川 陽一其他文献

澁川 陽一的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('澁川 陽一', 18)}}的其他基金

ダイナミカル・リフレクション写像と関連する代数の研究
动态反射映射及相关代数研究
  • 批准号:
    23K03062
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ダイナミカル・ヤン・バクスター写像から定まる2つの代数の森田同値性
由动态 Yang-Baxter 映射确定的两个代数的 Morita 等价
  • 批准号:
    17K05187
  • 财政年份:
    2017
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Vertex-Face対応と量子代数の構成
顶点-面支持和量子代数配置
  • 批准号:
    15740001
  • 财政年份:
    2003
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
2つのヤン・バクスター方程式の楕円関数解と楕円的量子群
两个杨-巴克斯特方程和椭圆量子群的椭圆函数解
  • 批准号:
    10740001
  • 财政年份:
    1998
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
量子代数とその表現論
量子代数及其表示论
  • 批准号:
    08740003
  • 财政年份:
    1996
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
ヤンバクスター方程式と量子代数
杨-巴克斯特方程和量子代数
  • 批准号:
    06740002
  • 财政年份:
    1994
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
コンプリ-トリ-でシンメトリックなRマトリックスに付随した量子代数とその表現
完全对称R矩阵的量子代数及其表达式
  • 批准号:
    05740001
  • 财政年份:
    1993
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

Partial differential equation: Schrodinger operator and long-time dynamics
偏微分方程:薛定谔算子和长期动力学
  • 批准号:
    FT230100588
  • 财政年份:
    2024
  • 资助金额:
    $ 1.22万
  • 项目类别:
    ARC Future Fellowships
Multi-Scale Magnonic Crystals and Fractional Schr?dinger Equation-Governed Dynamics
多尺度磁子晶体和分数阶薛定谔方程控制的动力学
  • 批准号:
    2420266
  • 财政年份:
    2024
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Standard Grant
Hadron-Hadron Interactions and Equation of State from High-Energy Nuclear Collisions
高能核碰撞的强子-强子相互作用和状态方程
  • 批准号:
    23H01173
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
High Order Wave Equation Algorithms for the Frequency Domain
频域高阶波动方程算法
  • 批准号:
    2345225
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Standard Grant
A new nuclear matter calculation method based on realistic nuclear forces and the effect of many-body terms on the equation of state
基于现实核力和多体项对状态方程影响的新核物质计算方法
  • 批准号:
    23K03397
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Loewner equation and Teichmueller space theory
Loewner 方程和 Teichmueller 空间理论
  • 批准号:
    23H01078
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of a dietary estimation equation MEMO, using microdata to estimate nutrient intake from sources other than meals
开发饮食估计方程 MEMO,使用微观数据来估计膳食以外来源的营养摄入量
  • 批准号:
    23K12696
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Creation of low-noise quantum 3D imaging technique based on transport of intensity equation
基于强度传输方程的低噪声量子3D成像技术的创建
  • 批准号:
    23K17749
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development of an integral equation theory satisfying the variational principle and accurate for long-range potential systems
满足变分原理且对长程势系统准确的积分方程理论的发展
  • 批准号:
    23K04666
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
IHBEM: Data-driven integration of behavior change interventions into epidemiological models using equation learning
IHBEM:使用方程学习将行为改变干预措施以数据驱动的方式整合到流行病学模型中
  • 批准号:
    2327836
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了