Quantitative reasoning about database queries
数据库查询的定量推理
基本信息
- 批准号:412400621
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:DIP Programme
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Traditional database concepts and systems have insisted on the totality of logical correctness in query answering. However, nowadays data-centric applications often analyze datasets that are unreliable and noisy or simply too large to allow answering complex queries exactly. Hence the management of modern data should be pursued by incorporating uncertainty and imprecision in data modeling, sampling in data-access modeling, approximation in query semantics, and machine learning in query formulation. Yet, while these concepts are ubiquitous in modern practice of data analytics, their underlying foundational basis in database theory is sparse andfragmented. Our goal in this proposal is to embark on a systematic and integrated study of database management under these terms. Towards that, a crucial and central subgoal is to establish the theoretical foundations of approximate query answering in a manner that is dynamic (data driven) and quantitative. Being dynamic will enable better approximations, since we can leverage properties of the data at hand. Being quantitative will allow for approximation guarantees, either absolute or statistical, and will provide the flexibility to trade accuracy for performance. We will carry out the proposed research by pursuing several objectives. We plan to establish and explore the theoretical foundations of database distances and corresponding notions of approximate query answering, including the relationship to querying samples and lossy compressions of data. We will also investigate the application of the theory to more specific tasks such as text analytics and description of complex queries and functions.
传统的数据库概念和系统在查询应答中坚持逻辑正确性的整体性。然而,如今以数据为中心的应用程序经常分析不可靠和嘈杂的数据集,或者只是太大而无法准确回答复杂的查询。因此,现代数据的管理应该通过在数据建模中引入不确定性和不精确性,在数据访问建模中引入采样,在查询语义中引入近似,以及在查询公式化中引入机器学习来实现。然而,尽管这些概念在现代数据分析实践中无处不在,但它们在数据库理论中的基础却稀疏而分散。我们在本提案中的目标是着手对这些条款下的数据库管理进行系统和综合的研究。为此,一个关键的和中心的子目标是建立近似查询回答的理论基础的方式,是动态的(数据驱动)和定量的。动态将实现更好的近似,因为我们可以利用手头数据的属性。量化将允许近似保证,无论是绝对的还是统计的,并将提供灵活性,以换取性能的准确性。我们将通过追求几个目标来开展拟议的研究。我们计划建立和探索数据库距离的理论基础和相应的近似查询回答的概念,包括查询样本和数据的有损压缩的关系。我们还将研究该理论在更具体的任务中的应用,例如文本分析和复杂查询和函数的描述。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Martin Grohe其他文献
Professor Dr. Martin Grohe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Martin Grohe', 18)}}的其他基金
Logik, Struktur und das Graphenisomorphieproblem
逻辑、结构与图同构问题
- 批准号:
217526258 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Reinhart Koselleck Projects
Schaltkreiskomplexität, Parametrische Komplexität und logische Definierbarkeit
电路复杂性、参数复杂性和逻辑可定义性
- 批准号:
186219630 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
Deskriptive Komplexitätstheorie kleiner Komplexitätsklassen
小复杂度类的描述复杂度理论
- 批准号:
125951430 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
Gibt es eine Logik für PTIME? (Forschungssemester)
PTIME 有逻辑吗?
- 批准号:
61560798 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
Baumartige Zerlegungen von Graphen und Strukturen und ihre Anwendungen
图和结构的树状分解及其应用
- 批准号:
24838406 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Research Grants
Die Komplexität von Constraint-Satisfaction Problemen
约束满足问题的复杂性
- 批准号:
5432723 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Research Grants
Graph-Based Generative Machine Learning for Optimal Molecular Design
用于优化分子设计的基于图的生成机器学习
- 批准号:
466417970 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
相似海外基金
CRII: SHF: Embedding techniques for mechanized reasoning about existing programs
CRII:SHF:现有程序机械化推理的嵌入技术
- 批准号:
2348490 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
SHF: Medium: Reasoning about Multiplicity in the Machine Learning Pipeline
SHF:Medium:机器学习管道中多重性的推理
- 批准号:
2402833 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Reasoning about Spatial Relations and Distributions: Supporting STEM Learning in Early Adolescence
空间关系和分布的推理:支持青春期早期的 STEM 学习
- 批准号:
2300937 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
BRITE Fellow: Autonomous Systems that Accommodate Human Perception and Reasoning about Uncertainty
BRITE 研究员:适应人类对不确定性的感知和推理的自治系统
- 批准号:
2227338 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Modeling the Conceptual Dynamics of College Students' Reasoning about Natural Selection
大学生自然选择推理的概念动态建模
- 批准号:
2300437 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
SHF: Small: Programming, and Reasoning about, Actors that Share State
SHF:小:共享状态的参与者的编程和推理
- 批准号:
2315884 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Computational Aspects of Reasoning about Dynamic Systems
动态系统推理的计算方面
- 批准号:
RGPIN-2022-05453 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Improving Question Answering Systems by Reasoning About Context
通过推理上下文来改进问答系统
- 批准号:
544188-2019 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Reasoning about Structured Story Representations
关于结构化故事表示的推理
- 批准号:
EP/W003309/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Fellowship
HCC: Medium: Improving data visualization and analysis tools to support reasoning about analysis assumptions
HCC:中:改进数据可视化和分析工具以支持分析假设的推理
- 批准号:
2211939 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant