微分方程式の大域構造とWKB解析

微分方程的全局结构和 WKB 分析

基本信息

  • 批准号:
    09740101
  • 负责人:
  • 金额:
    $ 1.28万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1998
  • 项目状态:
    已结题

项目摘要

昨年度に引続き、Painleve方程式(P_J)(J=I,...,VI)に対する完全WKB解析を考察した。昨年度の研究により明らかになったように、(P_J)(J=III,V,VI)については単純確定特異点を起点とする新しい種類のStokes曲線が存在する。本年度はまず、モノドロミー保存変形を通じて(P_J)に付随している線型方程式を解析することにより、この新種のStokes曲線における接続公式の主要項を決定した。既に得られていた(P_I)を標準形とする単純変わり点から出るStokes曲線における接続公式と合わせ、(P_J)に対する完全WKB解析の枠組はこれでほぼ完成したと考えられる。そこで次に、この完全WKB解析をPainleve方程式の具体的な大域的問題に応用することを試みた。具体的な問題として(P_<ii>)のある接続問題を取り上げたところ、従来Ablowitz-Segur.の結果として知られていたものと完全に一致する.結果が得られることが確かめられた。即ち、(P_<II>)の接続問題が(P_I)の接続公式を繰り返し使うことで解けるのである。これはPainleve方程式の大域的な問題に対する完全WKB解析の有効性を端的に示す結果であると言えよう。しかし、例えばモノドロミー群やStokes係数の具体的計算を実行する為には、我々の用いている形式解の解析的な意味づけを明らかにし、更に現時点ではある代数函数のRiemann面の上でのみ定義されているstokes曲線とそこでの接続公式を、何らかの意味で底空間に“射影"しなければならない。こうした問題への解答のヒントを得る為に、Painleve方程式より簡単と考えられる3階の線型方程式に対応する2階非線型方程式の完全WKB解析の解明に、河合隆裕氏や青木貴史氏と共同で現在取り組んでいる。いくつかの具体例について大域的な構造が明らかになりつつある段階である。
Painleve equation (P_J)(J=I,..., VI) Complete WKB analysis The Stokes curve of the new type exists in the study of the last year. This year, the main terms of the Stokes curve equation for the new species were determined. A complete WKB analysis is performed on the basis of the formula (P_J) and the formula (P_I). This is the second time that the complete WKB analysis of Painleve equations and specific large-domain problems are used. The concrete problem and (P_<ii>) and the connection problem are selected from the upper part and the lower part. The results are completely consistent. As a result, he was able to get the right answer. That is to say, the problem of (P_<II>) and (P_I) is solved by the formula of (P_I). This is the result of a complete WKB analysis of the Painleve equation in a large domain. For example, the specific calculation of Stokes coefficients of algebraic functions is carried out in the form of analytic solutions, and the definition of algebraic functions on the Riemann surface of algebraic functions is defined in the stokes curve. The solution of this problem is obtained from the Painleve equation, which is a simple linear equation of order 3 and a complete WKB solution of a nonlinear equation of order 2. The solution is obtained from the Kawai Takashi equation and the Aoki Takashi equation. For example, the structure of a large domain is clearly defined.

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
竹井 義次(青木貴史,河合隆裕との共著): "On the exact WKB analysis for the third order ordinary differential equations with a large parameter." Asian Journal of Mathematics. 掲載予定.
Yoshitsugu Takei(与 Takashi Aoki 和 Takahiro Kawai 合著者):“关于大参数三阶常微分方程的精确 WKB 分析”,《亚洲数学杂志》即将发表。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
竹井 義次: "On a WKB-theoretic approach to the Painleve transcendents.II." 京都大学 数理解析研究所講究録. 1058. 114-128 (1998)
Yoshitsugu Takei:“关于 Painleve 超越数的 WKB 理论方法。II”京都大学数学科学研究所 Kokyuroku。1058. 114-128 (1998)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
竹井 義次(河合 隆裕との共著): "WKB analysis of Painleve transcendents with a large parameter,III." Advances in Mathematics. (掲載予定).
Yoshitsugu Takei(与 Takahiro Kawai 合着):“带有大参数的 Painlevel 超越的 WKB 分析,III。数学进展”。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
竹井 義次(河合 隆裕との共著): "特異摂動の代数解析学" 岩波書店(岩波講座「現代数学の展開」)(1998年刊行予定),
武井义嗣(与河合贵宏合着):《奇异扰动的代数分析》岩波书店(岩波课程《现代数学的发展》)(预定于1998年出版),
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
竹井 義次(河合隆裕との共著): "WKB analysis of Painleve transcendents with a large parameter.III." Advances in Mathematics. 134-1. 178-218 (1998)
Yoshitsugu Takei(与 Takahiro Kawai 合着):“具有大参数的 Painlevel 超越项的 WKB 分析。III。数学进展 134-1(1998)。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

竹井 義次其他文献

The parametrix method for jump sdes
跳跃sdes的参数化方法
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    井ノ口順一;梶原健司;松浦望;太田泰広;井口 達雄;結城 郷;竹井 義次;久保英夫;Senjo Shimizu;Sumio Yamada;井口 達雄;結城 郷;Ken'ichi Ohshika;Senjo Shimizu;久保英夫;井口 達雄;竹内敦司;河合 隆裕;Ken'ichi Ohshika;Hideyuki Tanaka;高村博之;Senjo Shimizu;井口 達雄;Ken'ichi Ohshika;Yoshitsugu Takei;片山聡一郎;Senjo Shimizu;相木 雅史,井口 達雄;Arturo Kohatsu-Higa
  • 通讯作者:
    Arturo Kohatsu-Higa
パンルヴェ方程式と離散パンルヴェ方程式
Painlevé 方程和离散 Painlevé 方程
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.T. Barlow;D.A. Croydon and T. Kumagai;竹井 義次
  • 通讯作者:
    竹井 義次
高階 Painleve 方程式の多重スケール解析
高阶 Painleve 方程的多尺度分析
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    河合 隆裕;竹井 義次;青木貴史
  • 通讯作者:
    青木貴史
Motion of a Vortex Filament in an External Flow
外流中涡丝的运动
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    井ノ口順一;梶原健司;松浦望;太田泰広;井口 達雄;結城 郷;竹井 義次;久保英夫;Senjo Shimizu;Sumio Yamada;井口 達雄;結城 郷;Ken'ichi Ohshika;Senjo Shimizu;久保英夫;井口 達雄;竹内敦司;河合 隆裕;Ken'ichi Ohshika;Hideyuki Tanaka;高村博之;Senjo Shimizu;井口 達雄;Ken'ichi Ohshika;Yoshitsugu Takei;片山聡一郎;Senjo Shimizu;相木 雅史,井口 達雄
  • 通讯作者:
    相木 雅史,井口 達雄
非線型変わり点の合流現象と4階I型パンルベ方程式
非线性转折点与四阶I型Painlevé方程的汇合现象
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Kajino;R. Huang and T. Kumagai;Mitsuhiro Shishikura;竹井 義次
  • 通讯作者:
    竹井 義次

竹井 義次的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('竹井 義次', 18)}}的其他基金

差分方程式および微分差分方程式系の完全WKB解析
差分方程和微分-差分方程组的完整 WKB 分析
  • 批准号:
    24K06767
  • 财政年份:
    2024
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Global structure of solutions for differential equations of singular perturbation type and exact WKB analysis
奇异摄动型微分方程解的全局结构及精确WKB分析
  • 批准号:
    19H01794
  • 财政年份:
    2019
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
特異摂動の非線型微分方程式に対する代数解析
奇异扰动非线性微分方程的代数分析
  • 批准号:
    11740087
  • 财政年份:
    1999
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
特異摂動とWKB解析
奇异扰动和 WKB 分析
  • 批准号:
    08740101
  • 财政年份:
    1996
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
特異摂動とWKB解析
奇异扰动和 WKB 分析
  • 批准号:
    08211235
  • 财政年份:
    1996
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
特異摂動の方程式に対するWKB解析
奇异摄动方程的 WKB 分析
  • 批准号:
    05230036
  • 财政年份:
    1993
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
特異摂動の方程式に対するWKB解析
奇异摄动方程的 WKB 分析
  • 批准号:
    05740092
  • 财政年份:
    1993
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
微分方程式の大域理論と複素WKB法
微分方程的全局理论和复数WKB方法
  • 批准号:
    04740076
  • 财政年份:
    1992
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
偏微分方程式が可解となる領域の特徴づけ,及び擬微分作用素の準楕円性
偏微分方程可解区域的表征以及伪微分算子的拟椭圆性
  • 批准号:
    01790161
  • 财政年份:
    1989
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

A study of solutions of the Painleve equation derived from monodromy invariant Hermitian forms.
研究从单向不变埃尔米特形式导出的 Painleve 方程的解。
  • 批准号:
    22KJ2518
  • 财政年份:
    2023
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Studies on exact WKB analysis, topological recursion and Painleve equation
精确WKB分析、拓扑递归和Painleve方程的研究
  • 批准号:
    20K14323
  • 财政年份:
    2020
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Special solutions and linear monodromy for Painleve equation and Garnier system
Painleve方程和Garnier系统的特解和线性单调
  • 批准号:
    22540237
  • 财政年份:
    2010
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Painleve方程式とLie代数の表現
Painleve 方程和李代数表示
  • 批准号:
    07J00190
  • 财政年份:
    2007
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Painleve方程式、可積分系、Frobenious多様体
Painleve 方程、可积系统、Frobenious 流形
  • 批准号:
    17740076
  • 财政年份:
    2005
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Rational singularities, Young diagram, Painleve equation
有理奇点、Young 图、Painleve 方程
  • 批准号:
    11440006
  • 财政年份:
    1999
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了