Machine Learning for Physical Layer Security
物理层安全的机器学习
基本信息
- 批准号:426292827
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2019
- 资助国家:德国
- 起止时间:2018-12-31 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The digitalization of information processing disruptively changes everyone's life by making information available almost everywhere at any time. With this comes the need of spectrally efficient (wireless) communication systems and, in particular, sophisticated security mechanisms that secure the communication against adversarial attacks and protect the privacy of the data and users.Security related tasks are currently realized on higher layers and usually based on cryptographic principles. These have a wide variety of use and are based on the assumption of insufficient computational capabilities of adversaries and computational hardness of certain problems. However, due to increasing computational power, improved algorithms, and recent advances in number theory, these approaches are becoming less and less secure. Recently, the concept of physical layer security or information theoretic security has been examined as a complement to cryptographic techniques. Such approaches establish reliable communication and unconditional security jointly at the physical layer by exploiting physical properties of the communication channel. However, practical implementations are still in its infancy due to challenges such as its generalizability to arbitrary and changing network configurations and channel conditions.In another line of work, it has been demonstrated that fast and reliable communication schemes can be learned by communication systems using machine learning tools; particularly by using so-called deep neural networks (deep learning). Such machine learning tools can help to solve some of the challenges the communication theory is faced with and provide a way to design sophisticated communication systems that do not need to be tuned by hand to specific channel conditions but are flexible and applicable to a broad range of scenarios. The present proposal tackles the challenge of developing machine learning based echniques for secure (wireless) communication systems. The core of the proposal are three key points:The first goal will be to identify, investigate, and to develop suitable security metrics. Such metrics need to be chosen and designed such that they keep their operational meaning of security and further allow the incorporation into training of different learning algorithms. The second goal will be to develop physical layer security models within the deep learning framework. This part will embrace recent developments for coding and communication and expand those models for physical layer security. The third goal will be to look into more general deep learning concepts including reinforcement learning, recurrent neural networks and generative adversarial networks and efficiently implement the resulting techniques and algorithms for real world scenarios.
信息处理的数字化颠覆性地改变了每个人的生活,使信息几乎随时随地都能获得。随之而来的是对频谱高效(无线)通信系统的需求,特别是复杂的安全机制,以确保通信免受对抗性攻击并保护数据和用户的隐私。目前,与安全相关的任务是在更高层上实现的,并且通常基于加密原理。这些方法用途广泛,并且基于对手计算能力不足和某些问题计算困难的假设。然而,由于计算能力的提高、算法的改进和数论的最新进展,这些方法变得越来越不安全。最近,物理层安全或信息论安全的概念被研究作为加密技术的补充。这些方法利用通信信道的物理特性,在物理层共同建立可靠的通信和无条件的安全。然而,实际实现仍然处于起步阶段,因为它的通用性,如任意和不断变化的网络配置和信道条件的挑战。在另一项工作中,已经证明,使用机器学习工具的通信系统可以学习快速可靠的通信方案;特别是通过使用所谓的深度神经网络(深度学习)。这样的机器学习工具可以帮助解决通信理论面临的一些挑战,并提供一种方法来设计复杂的通信系统,这些系统不需要手动调整到特定的信道条件,而是灵活且适用于广泛的场景。本提案解决了为安全(无线)通信系统开发基于机器学习的技术的挑战。该建议的核心是三个关键点:第一个目标是识别、调查和开发合适的安全度量标准。需要选择和设计这样的度量,使它们保持其安全的操作意义,并进一步允许将其合并到不同学习算法的训练中。第二个目标是在深度学习框架内开发物理层安全模型。这一部分将包含编码和通信的最新发展,并扩展这些模型用于物理层安全。第三个目标将是研究更一般的深度学习概念,包括强化学习、循环神经网络和生成对抗网络,并有效地将结果技术和算法应用于现实世界的场景。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr.-Ing. Rick Fritschek其他文献
Dr.-Ing. Rick Fritschek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Machine Learning-assisted Ultrafast Physical Vapor Deposition of High Quality, Large-area Functional Thin Films
合作研究:机器学习辅助超快物理气相沉积高质量、大面积功能薄膜
- 批准号:
2226918 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Machine Learning-assisted Ultrafast Physical Vapor Deposition of High Quality, Large-area Functional Thin Films
合作研究:机器学习辅助超快物理气相沉积高质量、大面积功能薄膜
- 批准号:
2226908 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Improving data-driven design using physical model-based machine learning
使用基于物理模型的机器学习改进数据驱动设计
- 批准号:
23K13239 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Improving Interpretable Machine Learning for Plasmas: Towards Physical Insight, Data-Driven Models, and Optimal Sensing
改进等离子体的可解释机器学习:迈向物理洞察、数据驱动模型和最佳传感
- 批准号:
2329765 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Critical Aspects of Sustainability (CAS)-Climate: Actionable Heat and Carbon Mitigation by Urban Greening--Integrating Physical Modeling and Machine Learning for Decision Support
可持续发展的关键方面(CAS)-气候:通过城市绿化实现可行的热量和碳减排——集成物理模型和机器学习以提供决策支持
- 批准号:
2300548 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
A machine learning approach to dealing with high-level radioactive wastes by controlling physical properties of high-temperature multiphase melt
通过控制高温多相熔体的物理性质来处理高放射性废物的机器学习方法
- 批准号:
23H03356 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Optimal control approach to machine learning with physical explainability
具有物理可解释性的机器学习最优控制方法
- 批准号:
23H01436 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Revealing the Physical Drivers of Morphological Evolution with AI/Machine Learning and Rubin Observatory
通过人工智能/机器学习和鲁宾天文台揭示形态进化的物理驱动因素
- 批准号:
2307158 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Physical, Mathematical, and Machine Learning Modeling of Iron and Steel Processes
钢铁工艺的物理、数学和机器学习建模
- 批准号:
RGPIN-2021-02615 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
CAREER: Enabling Trustworthy Upgrades of Machine-Learning Intensive Cyber-Physical Systems
职业:实现机器学习密集型网络物理系统的可信升级
- 批准号:
2143351 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant