Todd類の源を求めて

寻找托德物种的来源

基本信息

  • 批准号:
    14654010
  • 负责人:
  • 金额:
    $ 2.18万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Exploratory Research
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2004
  • 项目状态:
    已结题

项目摘要

(1)複素ベクトル束の切断の組による,対応するChern類の局所化理論を展開した.またこの場合の孤立特異点における留数の解析的,代数的および位相幾何的な具体的表示を与えた.最高次Chern類の場合はThom類がその局所情報を含み,Bochner-Martinelli核を通じて解析的,代数的,位相幾何的諸不変量を生み出す源となっていた。他のChern類についても"中間Thom類"を見い出した.ここで用いられた方法は,複素ベクトル束の間の準同型写像の退化集合の問題にも極めて有効であることが判明し,いわゆるThom-Porteous公式の見通しの良い新しい証明が得られた.この方法は,多様体が特異点を持つ場合にも有効であるという利点をもつ.(2)特性類の局所化および留数理論の複素力学系理論への応用として,複素特異曲面の自己双正則写像とその不変曲線に対し,留数公式を証明し,これを用いて孤立特異点を持つ複素曲面の自己双正則写像の不動点における双曲曲線の存在を証明した.このために,特異複素曲面内の曲線の交点理論を展開した.これは特異多様体上のGrothendieck留数を基礎とした解析的な局所理論と,Chern類の局所化理論を基礎とした大域理論からなり,両者はCech-de Rhamコホモロジー理論および階層化された空間上の積分理論で結びつけられる.W.Fultonの著書"Intersection Theory"では代数的な交点理論が展開されているが,上記2項目の成果は幾何学的,解析的観点をも含んだ大きな理論体系となり得るもので,本研究課題の目標に向けての大きな一歩である.
(1) the copy element is used to cut off the system, and the local theory of Chern is developed. The specific representation and representation of the phase of algebra in the analysis of isolated special points and residues. The highest-level Chern type is compatible with the Thom type. The local information is contained, and the Bochner-Martinelli core is parsed, algebraic, and the phase data is derived from the source. He uses the Chern category to check the medium Thom class to see the message. In order to solve the problem of degenerate set, the method is used to determine the accuracy of the method, and the Thom-Porteous formula is very useful. (2) the characteristic type "localization", "residue theory", "complex mechanical theory", "complex mechanics", "self-positive", "self-positive", "non-linear curve", "residue formula". When you use isolated special points, you can use a copy surface to write a double positive image like a fixed point, a hyperbolic line, a hyperbolic line. In this paper, the theory of the intersection of curved lines in a simple surface is developed. According to the local theory of the analysis of Grothendieck residues on the special multi-body, the Chern type is localized, the basic theory of global theory, the theory of global theory, the theory of Cech-de Rham, the theory of active division, the theory of positive division, the theory of the point of intersection of the algebra of "Intersection Theory" algebra, the theory of the intersection of the algebra of mathematics, the theory of the intersection of the algebra of mathematics, the theory of the intersection of the algebra of mathematics. What have you learned from the achievements of the above 2 projects? the analytical points include that the theoretical system of the theoretical system has been improved. The purpose of this study is to improve the results of this study.

项目成果

期刊论文数量(36)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Classifying singular Legendre curves by contactomorphisms
通过接触同态对奇异勒让德曲线进行分类
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Ebihara;Y. Miyoshi;K. Asamura;et al;S.Severmann et al.;G.Ishikawa
  • 通讯作者:
    G.Ishikawa
S.Yokura: "VERDIER-RIEMANN-ROCH FOR CHERN CLASS AND MILNOR CLASS"Asian J. Math. 6. 1-22 (2002)
S.Yokura:“陈省身级和米尔诺级的VERDIER-RIEMANN-ROCH”亚洲J.数学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
I.Shimada: "Fundamental groups of algebraic fiber spaces"Comment.Math.Helv.. 78. 335-362 (2003)
I.Shimada:“代数纤维空间的基本群”评论.Math.Helv.. 78. 335-362 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Oka: "Classification of sextics of torus type"Tokyo J. Math. 25. 399-433 (2002)
M.Oka:“环面型六分相的分类”Tokyo J. Math。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Planar cubic curves from Hesse to Mumford
从 Hesse 到 Mumford 的平面三次曲线
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    大本 亨;T.Ohmoto;諏訪 立雄;伊藤 敏和;岡 睦雄;田島 慎一;與倉 昭治;T.Suwa;T.Ito;M.Oka;S.Tajima;S.Yokura;T.Suwa;I.Nakamura
  • 通讯作者:
    I.Nakamura
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

諏訪 立雄其他文献

Relative Bott-Chern cohomology
相对Bott-Chern上同调
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Abate;F. Bracci;T. Suwa;F. Tovena;T. Suwa;T. Suwa;諏訪 立雄;諏訪 立雄;T. Suwa;T. Suwa
  • 通讯作者:
    T. Suwa
特性類の局所化としての Grothendieck 留数
格洛腾迪克残基作为属性类别的本地化
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Abate;F. Bracci;T. Suwa;F. Tovena;T. Suwa;T. Suwa;諏訪 立雄;諏訪 立雄;T. Suwa;T. Suwa;諏訪 立雄
  • 通讯作者:
    諏訪 立雄
Supersingular K3 surfaces in odd characteristic and sextic double plane
奇特征和六重双平面中的超奇异 K3 表面
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    大本 亨;T.Ohmoto;諏訪 立雄;伊藤 敏和;岡 睦雄;田島 慎一;與倉 昭治;T.Suwa;T.Ito;M.Oka;S.Tajima;S.Yokura;T.Suwa;I.Nakamura;G.Ishikawa;G.Ishikawa;I.Shimada;I.Shimada
  • 通讯作者:
    I.Shimada
Riemann-Roch via localization
Riemann-Roch 通过本地化
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Abate;F. Bracci;T. Suwa;F. Tovena;T. Suwa;T. Suwa;諏訪 立雄;諏訪 立雄;T. Suwa;T. Suwa;諏訪 立雄;諏訪 立雄;諏訪 立雄;T. Suwa;T. Suwa
  • 通讯作者:
    T. Suwa
Relative Dolbeault cohomology and Hodge decomposition problem
相对Dolbeault上同调和Hodge分解问题
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Bisi;F. Bracci;T. Izawa and T. Suwa;楫 元;Tatsuo Suwa;楫 元;楫 元;諏訪立雄;楫元;Tatsuo Suwa;Tatsuo Suwa;楫元;Kohji Yanagawa;諏訪 立雄
  • 通讯作者:
    諏訪 立雄

諏訪 立雄的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('諏訪 立雄', 18)}}的其他基金

Theory of relative cohomology for various complexes of fine sheaves and its applications
各种细滑轮复合体的相对上同调理论及其应用
  • 批准号:
    20K03572
  • 财政年份:
    2020
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
複素解析的葉層構造の特異点の研究
复杂解析叶结构奇异性研究
  • 批准号:
    06221202
  • 财政年份:
    1994
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
複素解析的葉層構造の特異点の研究
复杂解析叶结构奇异性研究
  • 批准号:
    04245201
  • 财政年份:
    1992
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
複素解析多様体、解析空間に関連した解析学の共同研究の企画
规划与复杂解析流形和解析空间相关的分析联合研究
  • 批准号:
    63306002
  • 财政年份:
    1988
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Co-operative Research (B)
複素解析的葉層構造の特異点の研究
复杂解析叶结构奇异性研究
  • 批准号:
    62540002
  • 财政年份:
    1987
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
複素解析的葉層構造の特異点の研究
复杂解析叶结构奇异性研究
  • 批准号:
    61540001
  • 财政年份:
    1986
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
複素解析的葉層構造の研究
复杂解析叶结构的研究
  • 批准号:
    59540002
  • 财政年份:
    1984
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
複素多様体の構造と変形の研究
复杂流形的结构与变形研究
  • 批准号:
    X00095----364002
  • 财政年份:
    1978
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (D)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了