Exact renormalization group for quantum spin systems and strongly correlated electrons
量子自旋系统和强相关电子的精确重整化群
基本信息
- 批准号:431190042
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In this renewal proposal we will extend the applicability of the functional renormalization group (FRG) method to general quantum systems with projected Hilbert spaces. An important example is the quantum spin systems which we have studied during the first funding period of this proposal; in this case the charge degrees of freedom of an underlying electronic lattice model are projected out, so that the effective spin Hamiltonian acts only on the spin sector of the electronic Hilbert space. Another example is the so-called $t-J$-model which retains not only the spin sector of the Hilbert space, but also the part of the charge sector involving states without doubly occupied lattice sites. Up until now a direct application of the FRG to the $t-J$-model is not possible because the projected Hilbert space does not allow a representation of its correlation functions in terms of unconstrained functional integrals over bosonic or fermionic coherent states. However, the crucial insight in our initial work on the application of the FRG to quantum spin systems is that the FRG can also be used to study quantum systems which do not have a functional integral representation. Apparently, a large part of the FRG community is not aware of this fact. The purpose of this proposal is to further develop this strategy and apply it to fermionic lattice models with projected Hilbert spaces, thus opening a new way to study strongly correlated fermionic lattice models non-perturbatively.
在这个更新提案中,我们将把函数重正化群(FRG)方法的适用性扩展到具有投影希尔伯特空间的一般量子系统。一个重要的例子是我们在本提案的第一个资助期间研究的量子自旋系统;在这种情况下,底层电子晶格模型的电荷自由度被投影出来,因此有效自旋哈密顿量仅作用于电子希尔伯特空间的自旋扇区。另一个例子是所谓的$t-J$模型,它不仅保留了希尔伯特空间的自旋扇区,而且还保留了涉及没有双占据晶格位点的状态的电荷扇区部分。到目前为止,将 FRG 直接应用于 $t-J$ 模型是不可能的,因为投影希尔伯特空间不允许用玻色子或费米子相干态上的无约束函数积分来表示其相关函数。然而,我们最初将 FRG 应用到量子自旋系统的工作中的关键见解是,FRG 也可以用于研究没有函数积分表示的量子系统。显然,FRG 社区的很大一部分人并没有意识到这一事实。该提案的目的是进一步发展这一策略并将其应用于具有投影希尔伯特空间的费米子晶格模型,从而开辟一种非扰动研究强相关费米子晶格模型的新方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Peter Kopietz其他文献
Professor Dr. Peter Kopietz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Peter Kopietz', 18)}}的其他基金
Von molekularen zu mesoskopischen Magneten sowie lokalisierte Spins und itinerante Elektronen
从分子到介观磁体以及局域自旋和流动电子
- 批准号:
5297504 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Research Units
Weiterentwicklung der Bosonisierungsmethode für wechselwirkende Fermionen in Raumdimensionen d » 1
空间维度相互作用费米子玻色子化方法的进一步发展 d » 1
- 批准号:
5085368 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
各向同性淬致无序环境中层列型液晶A-C相变
- 批准号:11004241
- 批准年份:2010
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of tensor network renormalization group method for high dimensions and new understanding of quantum liquid phases
高维张量网络重整化群方法的发展及对量子液相的新认识
- 批准号:
23H01092 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of tensor renormalization group for lattice field theories rich in internal degrees of freedom
丰富内部自由度晶格场论张量重整化群的发展
- 批准号:
23K13096 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERI: Representations of Complex Engineering Systems via Technology Recursion and Renormalization Group
ERI:通过技术递归和重整化群表示复杂工程系统
- 批准号:
2301627 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Complex dynamics: group actions, Migdal-Kadanoff renormalization, and ergodic theory
复杂动力学:群作用、Migdal-Kadanoff 重整化和遍历理论
- 批准号:
2154414 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Homotopy Algebraic Approach to the Exact Renormalization Group Analysis in Quantum Field Theory
量子场论中精确重正化群分析的同伦代数方法
- 批准号:
22K14038 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Tensor renormalization group study of (3+1)-dimensional systems with the sign problem
(3 1) 维系统的符号问题的张量重整化群研究
- 批准号:
21J11226 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Renormalization Group Flows, Embedding Theorems, and Applications
重整化群流、嵌入定理和应用
- 批准号:
2107205 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Development of functional-renormalization-group aided density functional theory as a novel method for many-body systems
泛函重正化群辅助密度泛函理论的发展作为多体系统的新方法
- 批准号:
20J00644 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Improvement of tensor network renormalization group and high accuracy analysis of phase transitions and critical phenomena
张量网络重正化群的改进及相变和临界现象的高精度分析
- 批准号:
20K03780 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studying Critical phenomena at the Jamming Transition through the Renormalization Group
通过重正化群研究干扰转变中的关键现象
- 批准号:
502548-2017 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral