Systems of differential equations invariant under an action of a group

群作用下不变的微分方程组

基本信息

项目摘要

The zonal spherical funtions are important functions generalized the characters of representations. Their radial components are characterized by the holonomic systems of differential equations invariant under the action of the Weyl group. Heckman-Opdam generalized the discrete parameters in the system to continuous ones.On the other hand, known completely integrable quantum systems are invariant under a Weyl group or a Coxter groups or specializations of such invariant ones. Heckman-Opdam's system of differential equations are completely integrable systems with trigonometric potentials.In this research project we attacked the problem to get all the completely integrable systems invariant under the classical Weyl group and we finally succeeded in the complete classification of such systems. Namely, we proved that the potential functions are expressed by elliptic functions or its degeneration, trigonometric functions or rational functions and determined them explicitely.Moreover we proved the complete integrability of the systems by the explicit construction of integrals of the higher order. Their complete integrability had been a conjecture in the case of elliptic potential. Cherednik also proved the integrability when the potentials are corresponding to a root system after our results were obtained.These system are considered to be a generalization of Huen's ordinary differential equation to partial differential equations. Now we are planning to study the systems and their solutions in detail when the parameters take some special values related to important ploblems in representation theory or other fields.
带状球函数是推广表示性质的重要函数。它们的径向分量由在Weyl群作用下不变的完整微分方程组来表征。Heckman-Opdam将系统中的离散参数推广为连续参数,另一方面,已知的完全可积量子系统在Weyl群或Coxter群下是不变的,或者在这类不变群的特殊化下是不变的。Heckman-Opdam微分方程组是一类具有三角势的完全可积系统,本研究课题对这类系统进行了研究,得到了所有在经典Weyl群下不变的完全可积系统,并成功地对这类系统进行了完全分类。即证明了系统的势函数可以用椭圆函数或其退化函数、三角函数或有理函数表示,并明确地确定了它们,同时通过高阶积分的显式构造,证明了系统的完全可积性。它们的完全可积性在椭圆势情形下一直是一个猜想。Cherednik在我们的结果之后,证明了当位势对应于一个根系时的可积性,这些根系被认为是Huen常微分方程到偏微分方程的推广。现在,我们正计划详细研究当参数取某些特殊值时的系统及其解,这些参数与表示论或其他领域中的重要问题有关。

项目成果

期刊论文数量(68)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S.Kusuoka: "A basic estimate for twodimensinal stochastic holonomy" Journal of Functional Analysis. 127. 132-154 (1995)
S.Kusuoka:“二维随机完整性的基本估计”泛函分析杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yujiro Kawamata: "Semistable minimal models of three folds in positive or mixed charactexistic" J.Alg.Geom. 3. 463-491 (1994)
Yujiro Kawamata:“正或混合特征的三折半稳定最小模型”J.Alg.Geom。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
楠岡成雄: "確率・統計" 森北出版, 102 (1995)
楠冈繁雄:《概率论与数理统计》森北出版社,102(1995)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
片岡清臣: "Microlocal Analysis of Boundary Value Problems with regular singularities" 数理解析研究所講究録「超局所解析と漸近解析」. (1995)
Kiyoomi Kataoka:“具有正则奇点的边值问题的微局部分析”数学科学研究所Kokyuroku“超局部分析和渐近分析”(1995)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Toshio Oshima: "Commuting families of differential operators inuariant under the action of a Weyl group" J.Math.Sci.Univ.of Tokyo. 2. 1-75 (1995)
Toshio Oshima:“Weyl 群作用下微分算子 inuariant 的通勤族”J.Math.Sci.Univ.of Tokyo。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OSHIMA Toshio其他文献

OSHIMA Toshio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OSHIMA Toshio', 18)}}的其他基金

Study of group representation and differential equations associated with root systems and its applications
与根系相关的群表示和微分方程研究及其应用
  • 批准号:
    20244008
  • 财政年份:
    2008
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Systems of differential equations with group actions and their applications
具有群作用的微分方程组及其应用
  • 批准号:
    16340034
  • 财政年份:
    2004
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Systems of differential equations attached to representations of Lie groups
附加到李群表示的微分方程组
  • 批准号:
    12440034
  • 财政年份:
    2000
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Differential equations on homogeneous spaces
齐次空间上的微分方程
  • 批准号:
    09440048
  • 财政年份:
    1997
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Measurement of Surface Properties on Fine Ground Product by Laser-Raman Spectrum
激光拉曼光谱测量细磨产品的表面特性
  • 批准号:
    01550749
  • 财政年份:
    1989
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Harmonic Analysis on Symmetric Spaces
对称空间的调和分析
  • 批准号:
    62460004
  • 财政年份:
    1987
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)

相似海外基金

Research on invariants and invariant differential operators on CR manifolds
CR流形上不变量及不变量微分算子的研究
  • 批准号:
    20K22318
  • 财政年份:
    2020
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Holonomy Theory of Indefinite Metrics, Conformally Invariant Differential Operators and Q-Curvature (A07)
不定度量的完整理论、共形不变微分算子和Q曲率(A07)
  • 批准号:
    100164897
  • 财政年份:
    2009
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Collaborative Research Centres
Affine quotient maps and invariant differential operators
仿射商图和不变微分算子
  • 批准号:
    17340037
  • 财政年份:
    2005
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了