種々の関数空間とその応用の研究
各类功能空间及其应用研究
基本信息
- 批准号:05640159
- 负责人:
- 金额:$ 0.7万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1993
- 资助国家:日本
- 起止时间:1993 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
研究代表者は,主にCp^αという関数空間の性質を研究した.これは,以前から何人かの研究者によって考えられていたシャープ最大関数を用いて定義される関数空間で,基本的な性質はDeVoreとSharpleyによって調べられていたものである.我々の研究の特色は最大関数を用いた実関数論的な方法を徹底して用いることである.我々の方法のひとつの長所は,ユークリッド空間R^nの任意の開集合Ω上のCp^α=Cp^α(Ω)について(Ωに全く制限を付けずに),結果が得られることである.まず,Cp^α(Ω)のアトム分解についての結果を得た.ΩがR^n全体でないときには,関数のアトム分解の伴って関数のgenetic part(と我々は呼ぶ)という滑らかな関数が現れるが,このgenetic partの評価を詳しく調べた.次に,この結果を利用して,Cp^α(Ω)の関数たちの各点毎の積を作る掛け算と,その逆に,与えられた関数を2つの関数の積に分解する因数分解の問題とについて,結果を得た.掛け算と因数分解に関する結果は,よく知られたSobolev空間に対しても新しい事実を教えるものである.これらの結果は現在,論文にまとめている.また,Cp^α(Ω)の関数をCp^α(R^n)の関数に延長することに関する結果をMathematica Japonicaに発表した.分担者の山崎昌男は,Morrey空間とBesov空間の両方の孝え方を組み合わせてMorrey空間を基礎とするBesov空間というものを構成し,その性質を調べ,その結果をNavier-Stokes方程式に応用した.これは,名古屋大学の小薗英雄氏も共同した研究で,C.R.Sci.Acad.Parisに発表された.担者の藤田岳彦は正則(holomorphic)拡散過程の性質を調べ,結果をHitotsubashi Journal of Arts and Sciencesに発表した.
The representative of the research is to study the properties of the relevant number space. This is the definition of the relationship space, the basic property of which is DeVore and Sharpley. The characteristics of my research are the maximum relevant number, the use of the relevant number theory method, and the thorough use of the relevant number theory method. In this paper, we propose a new method to solve the problem of CP ^α = Cp ^α (Ω) on an arbitrary open set Ω of R ^n. The result of decomposition of Cp ^α (Ω) is obtained. The genetic part of the relevant number is decomposed into the genetic part of the relevant number. The genetic part of the relevant number is evaluated in detail. Next, the result is used to calculate the product of each point of Cp ^α (Ω) and the product of Cp ^α (Ω). The result of factorization is known as Sobolev space. The result of this paper is now. The relation between Cp ^α (Ω) and Cp ^α (R ^n) is extended. The components of the Besov space and Morrey space are composed of the following properties: the Navier-Stokes equations. This is a joint research project of Nagoya University, C. R. Sci. Acad. Paris. The author Yukihiko Fujita adjusted the properties of holomorphic dispersion process, and the results were reported in Hitotsubashi Journal of Arts and Sciences.
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Takahiko Fujita: "On some properties of holomorphic diffusion processes" Hitotsubashi Journal of Arts and Sciences. 34. 83-90 (1993)
Takahiko Fujita:“关于全纯扩散过程的一些性质”一桥艺术与科学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takashi Nagashima: "Revised proof of Skolem's theorem" Hitotsubashi Journal of Arts and Sciences. 34. 75-82 (1993)
Takashi Nagashima:“斯科伦定理的修订证明”一桥艺术与科学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Akihiko Miyachi: "Extension theorems for the function spaces of DeVore and Sharpley" Mathematica Japonica. 38. 1033-1049 (1993)
Akihiko Miyachi:“DeVore 和 Sharpley 函数空间的可拓定理” Mathematica Japonica。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hideo Kozono and Masao Yamazaki: "Semilinear heat equations and the Navier-Stokes equation with distributions as initial data" Comptes Rendus des Seances de l'Academie des Sciences,Ser.I,Math.,Paris. 317. 1127-1132 (1993)
Hideo Kozono 和 Masao Yamazaki:“半线性热方程和以分布作为初始数据的纳维-斯托克斯方程”Comptes Rendus des Seances de lAcademie des Sciences,Ser.I,Math.,巴黎。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
宮地 晶彦其他文献
On some singular Fourier multipliers = ある特異なフーリエ掛け算作用素について
- DOI:
- 发表时间:
1981 - 期刊:
- 影响因子:0
- 作者:
宮地 晶彦 - 通讯作者:
宮地 晶彦
Missing terms in Classical Inequalites.
古典不等式中缺失的项。
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
薮田 公三;中路 貴彦;佐藤 圓治;田中 仁;宮地 晶彦;堀内利郎;堀内利郎 - 通讯作者:
堀内利郎
宮地 晶彦的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('宮地 晶彦', 18)}}的其他基金
調和解析における実関数論の方法とその応用
调和分析中的实函数理论方法及其应用
- 批准号:
23K20223 - 财政年份:2024
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
調和解析における実関数論の方法とその応用
调和分析中的实函数理论方法及其应用
- 批准号:
20H01815 - 财政年份:2020
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
種々の関数空間における因数分解の研究
各种函数空间中因式分解的研究
- 批准号:
13874027 - 财政年份:2001
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Exploratory Research
振動積分作用素と最大関数の研究
振荡积分算子和极大函数的研究
- 批准号:
08640239 - 财政年份:1996
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
実関数論的方法による調和解析
使用实函数理论方法进行谐波分析
- 批准号:
03640135 - 财政年份:1991
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
実関数論の方法による調和解析の一般化
使用实函数理论方法进行谐波分析的推广
- 批准号:
63540104 - 财政年份:1988
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
複素関数論的方法による調和解析の研究
复变函数理论方法的调和分析研究
- 批准号:
62740083 - 财政年份:1987
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
複素関数論的方法による調和解析の研究
复变函数理论方法的调和分析研究
- 批准号:
59540071 - 财政年份:1984
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
多変数関数のH^pクラスとNevanlinnaクラスの研究
多变量函数H^p类和Nevanlinna类的研究
- 批准号:
56740056 - 财政年份:1981
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
相似海外基金
CAREER: Nitride Synthesis via Controlled Decomposition of Precursors under Moderate Pressure
职业:通过中压下前体的受控分解合成氮化物
- 批准号:
2046468 - 财政年份:2021
- 资助金额:
$ 0.7万 - 项目类别:
Continuing Grant














{{item.name}}会员




