Scaled boundary isogeometric analysis with advanced features for trimmed objects, higher order continuity, and structural dynamics

缩放边界等几何分析,具有修剪对象、高阶连续性和结构动力学的高级功能

基本信息

项目摘要

This follow-up research proposal is concerned with the analysis of advanced geometry representations of solids, such as trimmed objects, by employing the isogeometric scaled boundary approach. Developed in the first phase of the project, this approach enables a boundary oriented modelling of solids, which is in full accordance with the isogeometric paradigm. In the scaled boundary approach, the solid is split into sections in relation to its boundary surfaces and the scaling centre. This is conceptually different to the standard 3D-patch definition where a tri-variate tensor product representation is assumed. While the displacement interpolation on the interface between the sections is only C0-continuous, the discretization within adjacent sections can be of higher order and conforming or non-conforming. Therefore, we seek for a general method to couple adjacent sections while preserving higher-order continuity on the interface. In CAD, solids are defined through the definition of their bounded surfaces. Commonly these surfaces overlap and the kernel of all surfaces represents the solid. An issue that may occur here affects the degrees of freedom of adjacent surfaces. Due to the lack of shared control points, these degrees of freedom might not be coupled along the intersection. Using the isogeometric scaled boundary approach, we are aiming for a method which provides higher continuity for the displacement approximation on the intersections. Based on the continuity requirement, a relation is derived between the degrees of freedom acting on the intersection. Different approaches for the enforcement of the continuity constraint are discussed, such as a collocation or the mortar approach. Furthermore, the derivation of a higher-order coupling approach implies a modification of the basis functions. To this end, a master-slave framework is suggested that allows the derivation of a modification matrix in a least square setting. The derived methodology is applied to different types of sections such as conforming, hierarchical and non-conforming sections. One advantage of the Ck-continuous formulation lies in the reduction of optical branches present in structural dynamics, e.g. the finite element analysis. Higher-order continuity is in particular promising for problems in structural dynamics. The extension of the methodology to time-dependent problems enables the assessment of higher-continuity in the spatial dimension while the differential-algebraic extension of the α-method forms the basis for the time integration scheme.The methodology contributes towards providing a general approach for isogeometric analysis that can handle a wide class of geometric features and complex multi-patch constellations. A further aim of this project is to exploit the benefits of increased continuity in order to provide an accurate and robust numerical analysis framework for dynamic problems in solid mechanics.
本后续研究建议关注的是分析先进的几何表示的固体,如修剪对象,采用等几何比例边界的方法。在项目的第一阶段开发的,这种方法使一个面向边界的固体建模,这是完全符合等几何范式。在缩放边界方法中,实体被分割成与其边界表面和缩放中心相关的部分。这在概念上不同于标准3D面片定义,其中假设三变量张量积表示。虽然在截面之间的界面上的位移插值仅是C 0连续的,但相邻截面内的离散可以是高阶的,并且是协调的或非协调的。因此,我们寻求一种通用的方法来耦合相邻的部分,同时保持高阶连续的接口。在CAD中,实体是通过其边界曲面的定义来定义的。通常这些表面重叠,所有表面的核心代表实体。此处可能出现的问题会影响相邻曲面的自由度。由于缺少共享控制点,这些自由度可能不会沿着交点耦合。利用等几何比例边界法,我们的目标是一种方法,它提供了更高的连续性的位移近似的交点。基于连续性要求,推导出作用在交点上的自由度之间的关系。不同的方法来执行的连续性约束进行了讨论,如配置或砂浆的方法。此外,高阶耦合方法的推导意味着基函数的修改。为此,主-从框架的建议,允许在最小二乘设置的修改矩阵的推导。推导出的方法适用于不同类型的部分,如符合,分层和不符合部分。Ck连续公式的一个优点在于减少了结构动力学中存在的光学分支,例如有限元分析。高阶连续性在结构动力学问题中特别有前途。该方法的扩展到时间相关的问题,使更高的连续性的空间维的评估,而微分代数扩展的α-方法形成的基础上的时间积分scheme.The方法有助于提供一个通用的方法,可以处理广泛的类的几何特征和复杂的多补丁星座的等几何分析。该项目的另一个目的是利用增加连续性的好处,以便为固体力学中的动态问题提供准确和强大的数值分析框架。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Sven Klinkel其他文献

Professor Dr.-Ing. Sven Klinkel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Sven Klinkel', 18)}}的其他基金

A finite element model for the analysis of the nonlinear mechanical behavior of hybrid composite materials
用于分析混合复合材料非线性力学行为的有限元模型
  • 批准号:
    433734847
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
A numerical model for the analysis and simulation of electro-active paper
电活性纸分析与模拟的数值模型
  • 批准号:
    393020662
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Real-Time Hybrid Simulation of Shape Memory Alloy Dampers
形状记忆合金阻尼器的实时混合仿真
  • 批准号:
    322268262
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
An adaptive FE²-model for the analysis of the non-linear, thermo-mechanically coupled behavior of fiber-matrix composites
用于分析纤维基复合材料的非线性热机械耦合行为的自适应 FE² 模型
  • 批准号:
    283581644
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Balanced approximation spaces and mixed variational principles to eliminate locking effects in isogeometric shell analysis
平衡逼近空间和混合变分原理消除等几何壳分析中的锁定效应
  • 批准号:
    266714483
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Using finite strain 3D-material models in beam and shell elements. An interface between arbitrary 3D-material laws and finite elements which include special stress conditions
在梁和壳单元中使用有限应变 3D 材料模型。
  • 批准号:
    5320194
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships
Polygonal Reissner-Mindlin shell element formulation
多边形 Reissner-Mindlin 壳单元公式
  • 批准号:
    529267576
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Units
Coordination Funds
协调基金
  • 批准号:
    529252331
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Units
Naturally grown timber elements as basis for load-bearing building structures - structural analysis and growth simulation
自然生长的木材元素作为承重建筑结构的基础 - 结构分析和生长模拟
  • 批准号:
    512769030
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
  • 批准号:
    32070202
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
流体湍流运动的相关数学分析
  • 批准号:
    10971174
  • 批准年份:
    2009
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目
不可压流体力学方程中的一些问题
  • 批准号:
    10771177
  • 批准年份:
    2007
  • 资助金额:
    17.0 万元
  • 项目类别:
    面上项目
关于任意截面导体壁中的环状形非圆截面等离子体稳定性的研究
  • 批准号:
    10375050
  • 批准年份:
    2003
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

Exploration of Anisotropy and Inhomogeneity of Ocean Boundary Layer Turbulence
海洋边界层湍流的各向异性和不均匀性探索
  • 批准号:
    2344156
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Facilities for Atmospheric Boundary Layer Evaluation and Testing
大气边界层评估和测试设施
  • 批准号:
    LE240100116
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
CAREER: Turbulence-Resolving Integral Simulations for Boundary Layer Flows
职业:边界层流的湍流求解积分模拟
  • 批准号:
    2340121
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Asymptotic analysis of boundary value problems for strongly inhomogeneous multi-layered elastic plates
强非均匀多层弹性板边值问题的渐近分析
  • 批准号:
    EP/Y021983/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
AGS-FIRP Track 1: Enhancing Undergraduate Education of the Planetary Boundary Layer during the 2024 Solar Eclipse
AGS-FIRP 第 1 轨道:加强 2024 年日食期间行星边界层的本科教育
  • 批准号:
    2336464
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Entropy and Boundary Methods in von Neumann Algebras
冯诺依曼代数中的熵和边界方法
  • 批准号:
    2350049
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Impact of roughness on adverse pressure gradient turbulent boundary layers
粗糙度对逆压梯度湍流边界层的影响
  • 批准号:
    DP240103015
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Parabolic and elliptic boundary value and free boundary problems
抛物线和椭圆边值以及自由边界问题
  • 批准号:
    2349846
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Investigating the tectono-magmatic response to a transitioning plate boundary: a case study of the California Borderlands
职业:研究板块过渡边界的构造岩浆响应:加州边境地区的案例研究
  • 批准号:
    2338594
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Assessing the paleoenvironmental and geobiological significance of carbonates from the Eocene-Oligocene boundary of the White River Group
评估白河群始新世-渐新世边界碳酸盐的古环境和地球生物学意义
  • 批准号:
    2311532
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了