画像処理の数理における実解析的手法の探索

寻找图像处理数学中真正的分析方法

基本信息

项目摘要

研究実績は以下のとおり.研究代表者の小川は研究分担者の石井克幸と協力者の後藤陽子と共同で平均曲率流方程式を等高面の方法で考え、そのBence-Merrimen-Osher型の数値解析アルゴリズムの解への収束を、半線形熱方程式の解に対する特異摂動の観点から考え、粘性解の方法により証明した。平均曲率流方程式は特に画像処理の際のノイズ消去に有効に用いられるがその場合のBMOアルゴリズムの有効性が示せた.また,小川は単独で,鉄磁性体の2次元ising型spinモデル(シグマ模型)に対する連続体近似を考え、その半線形化方程式のエネルギー空間における可解性を新しいゲージ変換を考えることにより与えた。また関連して、粘性が入る場合に鉄磁性体モデルとSchrodinger写像、調和写像熱流との相関を議論し、それぞれ係数が極限と成る場合の状況について、ゲージ変換による議論、単調性公式による議論により特異性の発生について考察した。分担者の服部はプレシルピンスキーガウケットと呼ばれる無限フラクタル格子上の単純ランダムウォークと自己回避確率連鎖を連続的に内挿する自己抑制・吸引的確率連鎖の族を構成し,変位の指数を与えた.分担者の木村はパラメータを含む移流項を持つ楕円型方程式の第一固有値の特異摂動問題を考察した.移流の代表速度を表すパラメータが無限大に近づくとき起こる固有値の指数減衰現象について,空間1次元の場合に精密な漸近挙動評価を得た.分担者の松本は生成作用素の定義域が稠密でないanalytic semigroupおよび、integrated semigroupの時間に依存しない非線形摂動を考察し、汎関数を用いた一般的な増大条件の下で、弱解を与える発展作用素が存在するための必要十分条件を、方程式に対する陰的差分近似の存在によって与えた。
The research achievements are as follows. The representative of the research team, Ogawa, studied the method of equal surface analysis of the average curvature flow equation of the research partner, Katsuyuki Ishii, and the collaborator, Yoko Goto. The numerical analysis of the Bence-Merrimen-Osher type was proved by the method of solving the semi-linear heat equation, the method of solving the special motion point, and the viscous solution. The average curvature flow equation is effective in the case of special image processing. The two-dimensional ising-type spin model of ferromagnetic materials is based on the solvable properties of the semi-linear equations of the ferromagnetic materials. In the case of ferromagnetism, the correlation between viscosity and heat flux is discussed. In the case of limit coefficient, the correlation between viscosity and heat flux is discussed. In the case of uniformity formula, the development of specificity is investigated. The number of participants in the service sector is limited to the number of participants in the service sector. The first intrinsic value of the equation and the special dynamic problem of the equation are investigated. The representative velocity of the moving flow is expressed as infinite, nearly infinite, exponential decay phenomenon of inherent value, precise asymptotic motion evaluation in space 1-dimensional case. The domain of the agent is dense, the analytic semigroup is time-dependent, and the generalized semigroup is used under the condition that the weak solution exists and the differential approximation exists.

项目成果

期刊论文数量(54)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The limiting uniquness criterion by vorticity to Navier-Stokes equations in Besov spaces,
Besov 空间中纳维-斯托克斯方程的涡度极限唯一性准则,
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T.Ogawa;Y.Taniuchi
  • 通讯作者:
    Y.Taniuchi
Uniquness and inviscid limit to the complex Ginzburg-Landau equation in two dimensional general domain,
二维一般域中复数Ginzburg-Landau方程的唯一性和无粘极限,
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T.Ogawa;T.Yokota
  • 通讯作者:
    T.Yokota
T.Ogawa: "Sharp Sobolev inequality of logarithmic type and the limiting regularity condition to the harmonic heat flow"SIAM J. Math.Anal.. 34. 1317-1329 (2003)
T.Okawa:“对数型夏普索博列夫不等式和谐波热流的极限正则条件”SIAM J. Math.Anal.. 34. 1317-1329 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Kurokiba, T.Ogawa: "Finite time blow-up of the solution for the nonlinear parabolic equation of the drift diffusion type"Diff. Integral Equations. 16. 427-452 (2003)
M.Kurokiba、T.Okawa:“漂移扩散型非线性抛物方程解的有限时间放大”Diff。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Optimal Rate of Convergence of the Bence-Merriman-Osher Algorithm for Motion by Mean Curvature
  • DOI:
    10.1137/04061862x
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Ishii
  • 通讯作者:
    K. Ishii
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

小川 卓克其他文献

2次元臨界 Hardy 空間における drift・diffusion 方程式の可解性
二维临界 Hardy 空间中漂移/扩散方程的可解性
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    劉永琴;川島秀一;川島秀一;川島秀一;川島秀一;S.Kawashima;S.Kagei;隠居良行;隠居 良行;西畑 伸也;小川 卓克
  • 通讯作者:
    小川 卓克
発展方程式に対する Brezis-Merle の不等式と応用
Brezis-Merle 不等式及演化方程的应用
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    上田好寛;中村徹;川島秀一;S. Kawashima;川島秀一;S. Kawashima;Y. Kagei;Y. Kagei;S.Kawashima;川島 秀一;T.Ogawa;小川 卓克;小川 卓克
  • 通讯作者:
    小川 卓克
Fluid mechanial approximation to the degenerated drift-diffusion system from compressible Navier-Stokes-Poisson system
可压缩纳维-斯托克斯-泊松系统退化漂移扩散系统的流体力学近似
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    上田好寛;中村徹;川島秀一;S. Kawashima;川島秀一;S. Kawashima;Y. Kagei;Y. Kagei;S.Kawashima;川島 秀一;T.Ogawa;小川 卓克;小川 卓克;T.Kobayashi;S.Nishibata;Y.Kagei;T.Kobayashi;小川 卓克;S.Nishibata;小川 卓克;Y.Kagei;T.Kobayashi
  • 通讯作者:
    T.Kobayashi
Convergence rate of solutions toward stationary solutions to the compressible Navier-Stokes equation in multi-dimensional half space
多维半空间中可压缩纳维-斯托克斯方程的稳态解的收敛率
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    上田好寛;中村徹;川島秀一;S. Kawashima;川島秀一;S. Kawashima;Y. Kagei;Y. Kagei;S.Kawashima;川島 秀一;T.Ogawa;小川 卓克;小川 卓克;T.Kobayashi;S.Nishibata;Y.Kagei;T.Kobayashi;小川 卓克;S.Nishibata;小川 卓克;Y.Kagei;T.Kobayashi;S.Nishibata
  • 通讯作者:
    S.Nishibata
Asymptotic behavior of solutions to fluid dynamic model for semiconductor
半导体流体动力学模型解的渐近行为
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    上田好寛;中村徹;川島秀一;S. Kawashima;川島秀一;S. Kawashima;Y. Kagei;Y. Kagei;S.Kawashima;川島 秀一;T.Ogawa;小川 卓克;小川 卓克;T.Kobayashi;S.Nishibata;Y.Kagei;T.Kobayashi;小川 卓克;S.Nishibata
  • 通讯作者:
    S.Nishibata

小川 卓克的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('小川 卓克', 18)}}的其他基金

Invention and explorer for undiscovered structure and principle in the mathematical analysis for the relation between fluid dynamics and combustion.
流体动力学与燃烧关系数学分析中未被发现的结构和原理的发明和探索。
  • 批准号:
    20K20284
  • 财政年份:
    2020
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Creation of advanced method in mathematical analysis on nonlinear mathematical models of critical type
创建临界型非线性数学模型数学分析的先进方法
  • 批准号:
    19H05597
  • 财政年份:
    2019
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Unravel higher order critical structures to solutions of nonlinear dispersive and dissipative partial differential equations
解开非线性色散和耗散偏微分方程解的高阶临界结构
  • 批准号:
    19H00638
  • 财政年份:
    2019
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
非線形発展方程式の未踏臨界構造の解明
阐明非线性演化方程的未探索临界结构
  • 批准号:
    25247009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
非局所相互作用系と完全可積分構造の関連の探索
探索非局域交互系统与完全可积结构之间的关系
  • 批准号:
    19654028
  • 财政年份:
    2007
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
粘性流体と分散型非線形方程式研究に関する日韓国際共同研究
日韩国际粘性流体联合研究及分布非线性方程研究
  • 批准号:
    13894006
  • 财政年份:
    2001
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
非線形数値解析における粘性解の方法
非线性数值分析中的粘性求解方法
  • 批准号:
    11874024
  • 财政年份:
    1999
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
非線型発展方程式の解の挙動および関連する非線型楕円型方程式の解の構造の研究
研究非线性演化方程解的行为以及相关非线性椭圆方程解的结构
  • 批准号:
    04740071
  • 财政年份:
    1992
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

Development of a general-purpose computer-aided diagnosis system using VAE that can be used for a small number of cases
使用VAE开发可用于少量病例的通用计算机辅助诊断系统
  • 批准号:
    21H03840
  • 财政年份:
    2021
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了