Symmetry-based Turbulence Modelling for Engineering Applications

工程应用中基于对称的湍流建模

基本信息

项目摘要

Symmetries are at the heart of all physical theories, such as classical and quantum mechanics and relativity, as they reflect the axiomatic properties of the underlying physics. For Navier-Stokes turbulence, this property was extended by the applicant to include statistical symmetries, which are a unitary measure of non-Gaussian statistics and intermittency - key properties of turbulence. He rigorously developed these from the infinite sequence of the multi-point correlation equation and the Lundgren-Novikov-Monin probability density function hierarchy. In a number of publications, the applicant was able to show that these symmetries are the axiomatic basis of all turbulent scaling laws and recently he extended this to scaling laws for arbitrary moments, e.g. for the log-region. In turbulence model development, however, symmetries have been used largely unknowingly, but at least it has been achieved that since the 1940s, with each new class of models, further symmetries have been included in the models. From the 1970s onwards, the most important models included all symmetries of classical mechanics, i.e. the Galilean group. However, this explicitly did not apply to the statistical symmetries, which have not been included in any turbulence model so far. It is the central working hypothesis that the explicit and rigorous implementation of all symmetries, i.e. the classical as well as the statistical symmetries, will lead to a significant improvement of the accuracy of the model prediction. This is to be implemented in a multi-equation turbulence model and for a Reynolds stress transport model. The rationale is that, because the new turbulence models include all central symmetries on which all scaling laws for the first and higher moments are based, these are also accurately represented by the model. Scaling laws usually describe only subregions in a turbulent flow, but their very accurate modelling implies that even more complex flows are modelled much more precisely. The machinery of symmetries in infinitesimal form allows an elegant and rigorous derivation of the model equations, whereby a first published preliminary work has shown that, as expected, certain model freedoms are retained, but in particular model parameters cannot be determined from the symmetries. For the final parameter determination of the new turbulence models a machine-learning (ML) approach is chosen, which allows the parallel use of data of different turbulent model flows. The models are implemented in the hp-accurate in-house code BoSSS, which, based on the discontinuous Galerkin method, allows a very precise separation of numerical and model errors. The ML concept is also implemented within BoSSS, which allows an efficient implementation.
对称性是所有物理理论的核心,如经典力学、量子力学和相对论,因为它们反映了基础物理学的公理性质。对于Navier-Stokes湍流,该性质被申请人扩展到包括统计对称性,这是非高斯统计和间歇性湍流的关键性质的统一度量。他严格地从多点相关方程的无限序列和Lundgren-Novikov-Monin概率密度函数层次中发展了这些。在许多出版物中,申请人能够证明这些对称性是所有湍流标度定律的公理基础,最近他将其扩展到任意时刻的标度定律,例如对数区域。然而,在湍流模型的发展中,对称性在很大程度上是在不知情的情况下被使用的,但至少自20世纪40年代以来,随着每一类新模型的出现,进一步的对称性已经被纳入模型。从20世纪70年代开始,最重要的模型包括了经典力学的所有对称性,即伽利略群。然而,这显然不适用于统计对称性,到目前为止,统计对称性还没有包括在任何湍流模型中。这是一个中心的工作假设,即明确和严格地实施所有对称性,即经典对称性和统计对称性,将导致模型预测精度的显着提高。这将在多方程湍流模型和雷诺应力输运模型中实现。其基本原理是,由于新的湍流模型包括所有中心对称,所有第一阶矩和更高阶矩的标度定律都基于中心对称,因此这些也被模型准确地表示出来。标度定律通常只描述湍流中的子区域,但它们非常精确的建模意味着甚至更复杂的流动也可以更精确地建模。无限小形式的对称机制允许对模型方程进行优雅而严格的推导,由此首次发表的初步工作表明,如预期的那样,保留了某些模型自由,但特别是模型参数不能从对称性中确定。对于新湍流模型的最终参数确定,选择了机器学习(ML)方法,该方法允许并行使用不同湍流模型流的数据。这些模型是在hp精度的内部代码BoSSS中实现的,该代码基于不连续伽辽金方法,可以非常精确地分离数值误差和模型误差。机器学习概念也在BoSSS中实现,这允许有效的实现。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Martin Oberlack其他文献

Professor Dr.-Ing. Martin Oberlack的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Martin Oberlack', 18)}}的其他基金

Shock-like focusing of inertial waves - the localized generation of turbulence
惯性波的冲击式聚焦——湍流的局部产生
  • 批准号:
    407316090
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Experimental, numerical and analytical investigation of droplet oscillation of a viscoelastic fluid
粘弹性流体液滴振荡的实验、数值和分析研究
  • 批准号:
    330615302
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Non-Gaussianity, bounds on turbulent scaling parameter and conformal transformations - analyzing the Lundgrenand Hopf functional equation of turbulence using Lie symmetries
非高斯性、湍流标度参数和共形变换的界限 - 使用李对称性分析湍流的 Lundgrenand Hopf 函数方程
  • 批准号:
    385665358
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Direct numerical simulation of the droplet evaporation and combustion using a discontinuous Galerkin scheme
使用不连续伽辽金方案直接数值模拟液滴蒸发和燃烧
  • 批准号:
    352548003
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Asymptotic Suction Boundary Layer: Alternative Linear and Weakly Non-Modal Stability Modes - a New Route to Large-Scale Turbulent Structures
渐进吸力边界层:替代线性和弱非模态稳定模式 - 大规模湍流结构的新途径
  • 批准号:
    316376675
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Symmetry based scaling of the multi-point statistics of a turbulent Couette flow extended by wall-transpiration
由壁蒸腾扩展的湍流库埃特流的多点统计的基于对称的缩放
  • 批准号:
    267513790
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Helical invariant flows: New conservation laws and their importance for 2 1/2D turbulence
螺旋不变流:新守恒定律及其对 2 1/2D 湍流的重要性
  • 批准号:
    270556741
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Simulation of the droplet evaporation and combustion and droplet impact on a solid surface using a discontinuous Galerkin scheme
使用不连续伽辽金方案模拟液滴蒸发和燃烧以及液滴对固体表面的影响
  • 批准号:
    212746421
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Discontinuous Galerkin methods for two-phase flows with soluble surfactants
用于可溶性表面活性剂两相流的不连续伽辽金方法
  • 批准号:
    166796982
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Theoretische, numerische und experimentelle Untersuchungen tropfenförmiger Fluidschichten auf elektrisch hochbelasteten Isolierstoffoberflächen
高电负载绝缘材料表面滴状流体层的理论、数值和实验研究
  • 批准号:
    138260376
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
  • 批准号:
    52301178
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
NbZrTi基多主元合金中化学不均匀性对辐照行为的影响研究
  • 批准号:
    12305290
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
眼表菌群影响糖尿病患者干眼发生的人群流行病学研究
  • 批准号:
    82371110
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
  • 批准号:
    12375280
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
CuAgSe基热电材料的结构特性与构效关系研究
  • 批准号:
    22375214
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
基于大数据定量研究城市化对中国季节性流感传播的影响及其机理
  • 批准号:
    82003509
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

EAGER: Generalizing Monin-Obukhov Similarity Theory (MOST)-based Surface Layer Parameterizations for Turbulence Resolving Earth System Models (ESMs)
EAGER:将基于 Monin-Obukhov 相似理论 (MOST) 的表面层参数化推广到湍流解析地球系统模型 (ESM)
  • 批准号:
    2414424
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Towards understanding transition mechanism and application to heat transfer enhancement of elasto-inertia turbulence at low Reynolds number based on vortex modulation
基于涡旋调制的低雷诺数弹惯性湍流传热强化的理解和应用
  • 批准号:
    23K19093
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Establishment of scaling law for wall-bounded turbulence based on dissipation rate measurement
基于耗散率测量的壁面湍流标度律的建立
  • 批准号:
    22H01404
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Reduced-order modelling of jet noise using a map-based stochastic turbulence approach
使用基于地图的随机湍流方法对喷气噪声进行降阶建模
  • 批准号:
    470140627
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    WBP Position
Study on the generation mechanism of micro-scale turbulence in Earth's magnetosphere based on high-resolution plasma measurements and innovative analysis methods
基于高分辨率等离子体测量和创新分析方法研究地球磁层微尺度湍流产生机制
  • 批准号:
    21K03504
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Reduced-order modelling of jet noise using a map-based stochastic turbulence approach
使用基于地图的随机湍流方法对喷气噪声进行降阶建模
  • 批准号:
    470140694
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    WBP Fellowship
An ignition control method with optimizations of the composition of mixture and turbulence characteristics based on molecular diffusion characteristics
基于分子扩散特性优化混合气组成和湍流特性的点火控制方法
  • 批准号:
    20K04311
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Feedback control for turbulence based on coherent vortex structure
基于相干涡结构的湍流反馈控制
  • 批准号:
    19K14883
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Leaked information estimation based on atmospheric turbulence toward secure free-space optical communications
基于大气湍流的泄漏信息估计,实现安全的自由空间光通信
  • 批准号:
    19K14992
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Turbulence multi-scale interaction based on global stability of unsteady / nonequillibrium flow
基于非定常/非平衡流全局稳定性的湍流多尺度相互作用
  • 批准号:
    19K14880
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了