Machine-learning on brain connectomics: Individual prediction of cognitive functioning in health and cerebral small vessel disease
脑连接组学的机器学习:健康和脑小血管疾病中认知功能的个体预测
基本信息
- 批准号:454012190
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The overarching aim of this project is to develop, implement, and evaluate computational models for the prediction of individual cognitive performance from brain connectomics in healthy subjects and patients with cerebral small vessel disease. Hereby we address a substantial gap in research, connectome-based predictive modeling have to date focused either on young healthy adults, or on classification of dementia, mainly Alzheimer’s disease, while only little work has been done to study brain-behavior association in elderly patients at risk or with pre-symptomatic vascular brain changes. Focusing on this demographic group, we will establish an improved machine-learning framework for out-of-sample prediction of cognitive phenotypes from neuroimaging data. This work will be based on three large, population-based cohorts (Hamburg City Heath Study: N=3000, 1000Brains: N=1200 and UKbiobank: N=48000), which provide comprehensive assessments of cognitive function. Importantly, we will consider different imaging derived measures (grey matter volume, structural and functional connectivity, white-matter hyperintensities) alone and in combination to arrive at optimal models for each sample and behavioral phenotype. These will be benchmarked against models using only socio-demographic information and other background data to elucidate the added value of imaging for individual prediction. One of the key challenges for employing machine-learning approaches in clinical settings, i.e., translational application, is the fact that clinical samples are usually too small for model training and validation. Here we propose a novel strategy to address this problems, namely meta-learning. The key idea is to exploit the fact that brain-behavior associations live on a confined manifold, i.e., most behaviors are correlated and relate to a limited set of neurobiological modes of variation. A machine-learning model trained on a large cohort to predict a particular behavior from neuroimaging data should therefore also capture information about other, related behaviors in a smaller, clinically relevant sample. In the second part of this project, we will thus develop, apply and evaluate a novel strategy of meta-learning to transfer models trained in large population samples to new datasets that reflect critical outcome measures for clinical applications but are too small for robust training of predictive algorithms on these. This strategy will be tested in a clinical use-case involving three different samples of patients with cerebral small vessel disease and stroke, respectively. By thism the current proposal brings together a “big-data” strategy for connectcome-based prediction of individual traits with a focus on enabling a transfer to clinical use-cases with limited sample sizes. Taken together our goal is to foster the computational exploitation of brain connectomics for risk assessment, phenotype prediction and potential clinical diagnostics in individual patients.
该项目的总体目标是开发,实施和评估计算模型,用于预测健康受试者和脑小血管疾病患者的脑连接组学的个体认知表现。在此,我们解决了研究中的一个重大空白,基于连接体的预测建模迄今为止一直专注于年轻健康的成年人,或对痴呆症的分类,主要是阿尔茨海默病,而只有很少的工作已经做了研究,在老年患者的大脑行为关联风险或症状前血管脑变化。针对这一人口统计学群体,我们将建立一个改进的机器学习框架,用于从神经成像数据中预测认知表型的样本外预测。这项工作将基于三个大型的、以人群为基础的队列(汉堡市健康研究:N=3000,1000脑:N=1200和英国生物银行:N=48000),这些队列提供了对认知功能的全面评估。重要的是,我们将考虑不同的成像衍生措施(灰质体积,结构和功能连接,白质高信号)单独和组合,以达到每个样本和行为表型的最佳模型。这些将与仅使用社会人口统计信息和其他背景数据的模型进行基准测试,以阐明成像对个体预测的附加价值。在临床环境中采用机器学习方法的关键挑战之一,即,翻译应用中,临床样本通常太小,无法进行模型训练和验证。在这里,我们提出了一种新的策略来解决这个问题,即元学习。关键的想法是利用大脑行为关联存在于有限流形上的事实,即,大多数行为是相互关联的,并且与有限的一组神经生物学变化模式有关。因此,在大型队列中训练的机器学习模型,从神经成像数据中预测特定行为,也应该在较小的临床相关样本中捕获有关其他相关行为的信息。因此,在本项目的第二部分,我们将开发、应用和评估一种新的元学习策略,将在大样本人群中训练的模型转移到新的数据集,这些数据集反映了临床应用的关键结果指标,但对于预测算法的稳健训练来说太小了。该策略将在临床用例中进行测试,该用例分别涉及三种不同的脑小血管疾病和中风患者样本。通过这一点,目前的提案汇集了一个“大数据”策略,用于基于连接的个体特征预测,重点是能够转移到样本量有限的临床用例。总之,我们的目标是促进脑连接组学的计算开发,用于个体患者的风险评估,表型预测和潜在的临床诊断。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Simon Eickhoff其他文献
Professor Dr. Simon Eickhoff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Simon Eickhoff', 18)}}的其他基金
Automated brain-age prediction and its interpretation
自动脑年龄预测及其解释
- 批准号:
432015680 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
What does this part of the brain do?
大脑的这一部分有什么作用?
- 批准号:
288968401 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Multi-modal Mapping of the human dorsal premotor cortex based on function and connectivity
基于功能和连接性的人类背侧前运动皮层的多模态映射
- 批准号:
241883002 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Prediction of treatment success of dialectic behavioral therapy in borderline personality disorder
边缘性人格障碍辩证行为疗法治疗成功的预测
- 批准号:
499083365 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Connectivity-Optimized Individualized Localization (COIL)
连接优化的个性化定位 (COIL)
- 批准号:
519094028 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
儿童音乐能力发展对语言与社会认知能力及脑发育的影响
- 批准号:31971003
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
多场景网络学习中基于行为-情感-主题联合建模的学习者兴趣挖掘关键技术研究
- 批准号:61702207
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A Novel Contour-based Machine Learning Tool for Reliable Brain Tumour Resection (ContourBrain)
一种基于轮廓的新型机器学习工具,用于可靠的脑肿瘤切除(ContourBrain)
- 批准号:
EP/Y021614/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
2348159 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CRCNS: Identifying principles of auditory cortical organization with machine learning
CRCNS:通过机器学习识别听觉皮层组织的原理
- 批准号:
10830506 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Acquisition-independent machine learning for morphometric analysis of underrepresented aging populations with clinical and low-field brain MRI
独立于采集的机器学习,通过临床和低场脑 MRI 对代表性不足的老龄化人群进行形态计量分析
- 批准号:
10739049 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A machine learning based fetal monitoring system to predict and prevent fetal hypoxia.
基于机器学习的胎儿监测系统,用于预测和预防胎儿缺氧。
- 批准号:
10760437 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Enabling the Assessment of Fetal Brain Development and Degeneration with Machine Learning
通过机器学习评估胎儿大脑发育和退化
- 批准号:
10659817 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Disentangling the anatomical, functional and clinical heterogeneity of major depression, using machine learning methods
使用机器学习方法解开重度抑郁症的解剖学、功能和临床异质性
- 批准号:
10714834 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Accurate, reliable, and interpretable machine learning for assessment of neonatal and pediatric brain micro-structure
准确、可靠且可解释的机器学习,用于评估新生儿和儿童大脑微结构
- 批准号:
10566299 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Predicting ECMO NeuroLogICal Injuries using mAchiNe Learning (PELICAN)
使用机器学习预测 ECMO 神经损伤 (PELICAN)
- 批准号:
10719312 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Using Innovative Machine Learning to Detect Organized Support and Opposition to E-cigarette Use Prevention Campaign Messaging on Twitter and TikTok
使用创新的机器学习来检测 Twitter 和 TikTok 上有组织的对电子烟使用预防运动消息的支持和反对
- 批准号:
10720700 - 财政年份:2023
- 资助金额:
-- - 项目类别: