Modeling, Optimization, and Hardware Design of Intelligent Reflecting Surface Assisted Wireless Communication Systems
智能反射面辅助无线通信系统的建模、优化和硬件设计
基本信息
- 批准号:454492702
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Over the past decades, various techniques have been developed to improve the spectral and power efficiency of wireless communication systems. These techniques include (massive) multiple-input multiple-output (MIMO), full duplex communication, and non-orthogonal multiple access. Despite their significant advantages, these schemes and other similar approaches also have limitations. In particular, their effectiveness crucially depends on the wireless channel. If the channel has few scatterers or/and there is no line-of-sight (LoS) between transmitter and receiver, performance may severely degrade. However, so far, practically all attempts to improve the performance of wireless communication systems have focused on the transmitter and/or the receiver. The wireless channel itself has always been viewed as "God-given". To overcome this limitation, very recently, the idea of introducing large reflecting surfaces, whose electromagnetic (EM) properties can be externally controlled, into wireless systems was presented. These intelligent reflecting surfaces (IRSs) may be deployed outdoors on the facades of buildings or indoors on walls to assist the communication between the transmitters and receivers. From a communication system design point of view, IRS constitute a complete paradigm shift as they allow, for the first time, the manipulation of the properties of the wireless channel. However, the research on IRS-assisted wireless communication systems is still in its infancy.To fully evaluate and exploit their tremendous potential, a holistic design approach covering the modeling, optimization, and implementation of IRS-assisted wireless communication systems is needed. To accomplish this, we have assembled a team of researchers with significant expertise in signal processing and communications (Schober, Institute for Digital Communications), EM modelling and antenna design (Vossiek, Institute of Microwaves and Photonics), and transceiver design and implementation (Weigel, Institute for Electronics Engineering). The specific objectives of the proposed project include:1) Development of a general communication-theoretical model for IRS-assisted wireless systems based on the laws of physics governing the propagation of EM waves and their interaction with the IRS.2) Design and optimization of IRS-assisted wireless systems including beamforming, resource allocation, and channel estimation.3) Design and implementation of a fully modularized and flexible IRS with coupling and aperture efficiency optimized unit cells and an array design enabling large-scale measurements.4) Experiment based verification and refinement of the proposed theoretical models as well as the unit cell, array, and signal designs.The expected outcomes of this project include experimentally verified analytical model and design frameworks for IRS-assisted wireless communications as well as a fully operational IRS testbed.
在过去的几十年中,已经开发了各种技术来提高无线通信系统的频谱和功率效率。这些技术包括(大规模)多输入多输出(MIMO)、全双工通信和非正交多址。尽管这些方案和其他类似的方法具有显著的优点,但它们也具有局限性。特别是,它们的有效性关键取决于无线信道。如果信道具有很少的散射体或/和在发射器和接收器之间没有视线(LoS),则性能可能严重降低。然而,到目前为止,实际上所有提高无线通信系统性能的尝试都集中在发射机和/或接收机上。无线信道本身一直被视为“天赐的”。为了克服这种限制,最近,提出了将大反射表面引入无线系统的想法,该反射表面的电磁(EM)特性可以外部控制。这些智能反射表面(IRS)可以部署在室外建筑物的正面上或室内墙壁上,以辅助发射器和接收器之间的通信。从通信系统设计的角度来看,IRS构成了一个完整的范式转变,因为它们第一次允许操纵无线信道的属性。然而,IRS辅助无线通信系统的研究还处于起步阶段,为了充分评估和挖掘其巨大的潜力,需要一个涵盖IRS辅助无线通信系统建模、优化和实现的整体设计方法。为了实现这一目标,我们组建了一个研究团队,他们在信号处理和通信(斯科贝尔,数字通信研究所),EM建模和天线设计(Vossiek,微波和光子学研究所)以及收发器设计和实施(Weigel,电子工程研究所)方面具有重要的专业知识。拟议项目的具体目标包括:1)基于控制EM波传播及其与IRS相互作用的物理定律,开发用于IRS辅助的无线系统的通用通信理论模型。2)设计和优化IRS辅助的无线系统,包括波束成形、资源分配和信道估计。3)设计和实现完全模块化和灵活的IRS,其具有耦合和孔径效率优化的单元和能够进行大规模测量的阵列设计。4)基于实验验证和改进所提出的理论模型以及单元、阵列、天线和天线。该项目的预期成果包括经实验验证的IRS辅助无线通信的分析模型和设计框架,以及一个全面运行的IRS测试平台。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Robert Schober其他文献
Professor Dr.-Ing. Robert Schober的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Robert Schober', 18)}}的其他基金
Signal Design and Optimization for Wireless Communication Systems Employing Nonlinear RF Energy Harvesting
采用非线性射频能量收集的无线通信系统的信号设计和优化
- 批准号:
414988357 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Learning From Nature: Energy Harvesting and Intersymbol Interference Mitigation via Reuptake of Information Molecules in Diffusive Molecular Communication Systems
向自然学习:通过扩散分子通信系统中信息分子的重新摄取来收集能量和减轻符号间干扰
- 批准号:
386974524 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Massive MIMO Systems for Communication and Localization
用于通信和定位的大规模 MIMO 系统
- 批准号:
259038323 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
相似海外基金
SHF: Small: Methods and Architectures for Optimization and Hardware Acceleration of Spiking Neural Networks
SHF:小型:尖峰神经网络优化和硬件加速的方法和架构
- 批准号:
2310170 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
SHF: Medium: Cross-Stack Algorithm-Hardware-Systems Optimization Towards Ubiquitous On-Device 3D Intelligence
SHF:中:跨堆栈算法-硬件-系统优化,实现无处不在的设备上 3D 智能
- 批准号:
2312758 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: A Framework for Co-design and Optimization of Programmable Hardware Accelerators and Compilers
职业:可编程硬件加速器和编译器协同设计和优化的框架
- 批准号:
2238006 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
CRII: CNS: Design and System Technology Co-optimization Towards Addressing the Memory Bottleneck Problem of Deep Learning Hardware
CRII:CNS:设计和系统技术协同优化解决深度学习硬件的内存瓶颈问题
- 批准号:
2153394 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Near-Hardware Program Repair and Optimization
合作研究:SHF:中:近硬件程序修复和优化
- 批准号:
2211749 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
CCF: SHF: Small: Self-Adaptive Interference-Avoiding Wireless Receiver Hardware through Real-Time Learning-Based Automatic Optimization of Power-Efficient Integrated Circuits
CCF:SHF:小型:通过基于实时学习的高能效集成电路自动优化实现自适应干扰避免无线接收器硬件
- 批准号:
2218845 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Near-Hardware Program Repair and Optimization
合作研究:SHF:中:近硬件程序修复和优化
- 批准号:
2211750 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Near-Hardware Program Repair and Optimization
合作研究:SHF:中:近硬件程序修复和优化
- 批准号:
2211751 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
SBIR Phase I: Machine Learning Enhanced Hardware for Optimization and Self-tuning of High-Finesse Optical Cavities
SBIR 第一阶段:用于优化和自调节高精细光腔的机器学习增强硬件
- 批准号:
2025905 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
SBIR Phase II: Optimization of non-invasive fetal oxygenation sensing hardware and algorithm
SBIR第二阶段:无创胎儿氧合传感硬件和算法的优化
- 批准号:
2025901 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Cooperative Agreement