Spectral and Scattering Theory for Schrodinger Operators
薛定谔算子的光谱和散射理论
基本信息
- 批准号:09440055
- 负责人:
- 金额:$ 8.7万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B).
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this project is to investigate the spectral and scattering theory for Schrodinger operators in general. Moreover, it is also intended to explore new area of problems in quantum physics and related topics. Quite a few reserch results has been obtained in the project, and only a selected results by the head investigator and collaborators are presented here.1. By employing the theory of phase space tunneling, it is proved that the exponential decay rate of eigenfunctions for Schrodinger operator is larger in the semiclassical limit in the presence of constant magnetic field.2. Semiclassical asymptotics of the scattrering is investigated. In particular, it is shown that the spectral shift function has a rapid jump (of the size 2π times integer) near each quantum resonance.3. It is shown that the coefficients of the scattering matrix corresponding to the interaction between two nonintersecting energy surfaces decay exponentially in the semiclassical limit. A new method to analyze the phase space tunneling is developed and employed (joint work with A.Martinez, V.Sordoni).4. The Lifshitz tail for the integrated density of states is proved for 2 dimensional discrete Schrodinger operators and continuous Schrodinger operators (arbitrary dimension) with Anderson-type random magnetic fields.5. A new proof of the Wegner estimate based on the theory of the spectral shift function is developed. The Wegner estimate plays crucial role in the proof of Anderson localization for random Schrodinger operators (joint work with J.M.Combes, P.D.Hislop).
这个项目的目的是研究一般薛定谔算子的光谱和散射理论。此外,它还旨在探索量子物理和相关主题中的新问题。本项目已取得了相当多的研究成果,本文仅介绍了本项目主要研究者和合作者的部分成果.利用相空间隧穿理论,证明了在恒磁场存在下,薛定谔算符本征函数的指数衰减率在半经典极限下较大.研究了散射的半经典渐近性。特别是,它表明,光谱位移函数有一个快速跳跃(大小为2π倍整数)附近的每个量子共振.结果表明,对应于两个不相交的能量面之间的相互作用的散射矩阵的系数在半经典极限下呈指数衰减。一种新的方法来分析相空间隧穿的开发和使用(与A.马丁内斯,V.Sordoni的联合工作)。证明了在Anderson型随机磁场作用下,二维离散Schrodinger算符和连续Schrodinger算符(任意维数)积分态密度的Lifshitz尾.基于谱移函数理论,给出了Wegner估计的一个新的证明。Wegner估计在随机薛定谔算子的安德森局部化的证明中起着至关重要的作用(与J.M.Combes,P.D.Hislop的联合工作)。
项目成果
期刊论文数量(29)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Jensen,A., Nakamura,S.: "The 2d Schrodingen equation for a neutral pair in a constant magnetic field." Ann.Inst.H.Poincare,Phys.Theo. 67. 387-410 (1997)
Jensen,A.,Nakamura,S.:“恒定磁场中中性对的二维薛定根方程。”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Shu Nakamura: "Agmon-type exponential decay estimates for pseudodifferential operators" J.Math.Sci.Univ.Tokyo. (発表予定).
Shu Nakamura:“伪微分算子的 Agmon 型指数衰减估计”J.Math.Sci.Univ.Tokyo(待出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Shu Nakamura: "Tunneling estimates for magnetic Schrodinger operators"Communications in Mathematical Plysics. 208. 173-193 (1999)
Shu Nakamura:“磁薛定谔算子的隧道估计”数学 Plysics 中的通信。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
岡本久,中村周: "岩波講座「現代数学の基礎」第7巻,関数解析1,2"岩波書店. 266 (1997)
冈本恒、中村秀:《岩波讲义《现代数学基础》第 7 卷,泛函分析 1、2》岩波书店 266(1997)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Ogawa,T.: "Global well-posedness and conservation lows for the water wave interaction equation" Proc.Royal Soc.Edinburgh,Sect.A. 127A. 369-384 (1997)
小川,T.:“水波相互作用方程的全球适定性和守恒低点”Proc.Royal Soc.Edinburgh,Sect.A。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NAKAMURA Shu其他文献
NAKAMURA Shu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NAKAMURA Shu', 18)}}的其他基金
Spectral and scattering theory of Schroedinger equations
薛定谔方程的谱与散射理论
- 批准号:
21244008 - 财政年份:2009
- 资助金额:
$ 8.7万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Singularities of solutions to Schrodinger equations
薛定谔方程解的奇异性
- 批准号:
17340033 - 财政年份:2005
- 资助金额:
$ 8.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Spectral and Scattering Theory for Schrodinger Equations
薛定谔方程的谱和散射理论
- 批准号:
13640155 - 财政年份:2001
- 资助金额:
$ 8.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Development of a new EBSD analysis method combining dynamical scattering theory and machine learning
结合动态散射理论和机器学习开发新的 EBSD 分析方法
- 批准号:
23H01276 - 财政年份:2023
- 资助金额:
$ 8.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Modern field and scattering theory for fundamental physics
基础物理的现代场和散射理论
- 批准号:
2887909 - 财政年份:2023
- 资助金额:
$ 8.7万 - 项目类别:
Studentship
microscopic foundation of the shell model based on the scattering theory and the many-body perturbation theory
基于散射理论和多体摄动理论的壳模型微观基础
- 批准号:
23K03420 - 财政年份:2023
- 资助金额:
$ 8.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies of multi-dimensional quantum walks by spectral scattering theory
光谱散射理论研究多维量子行走
- 批准号:
23K03224 - 财政年份:2023
- 资助金额:
$ 8.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric Scattering Theory, Resolvent Estimates, and Wave Asymptotics
几何散射理论、分辨估计和波渐近学
- 批准号:
DE230101165 - 财政年份:2023
- 资助金额:
$ 8.7万 - 项目类别:
Discovery Early Career Researcher Award
Novel Sampling Methods for Electromagnetic Inverse Scattering Theory
电磁逆散射理论的新颖采样方法
- 批准号:
2208293 - 财政年份:2022
- 资助金额:
$ 8.7万 - 项目类别:
Standard Grant
Geometric Scattering Theory, Resolvent Estimates, and Wave Asymptotics
几何散射理论、分辨估计和波渐近学
- 批准号:
2204322 - 财政年份:2022
- 资助金额:
$ 8.7万 - 项目类别:
Continuing Grant
Singular integral operators and special functions in scattering theory
散射理论中的奇异积分算子和特殊函数
- 批准号:
21K03292 - 财政年份:2021
- 资助金额:
$ 8.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Spectral and scattering theory with microlocal and semiclassical methods
使用微局域和半经典方法的光谱和散射理论
- 批准号:
21K03276 - 财政年份:2021
- 资助金额:
$ 8.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Scattering theory and continuum limits of discrete Schrodinger operators
离散薛定谔算子的散射理论和连续谱极限
- 批准号:
21K20337 - 财政年份:2021
- 资助金额:
$ 8.7万 - 项目类别:
Grant-in-Aid for Research Activity Start-up