Relations between space-structures and curvatures

空间结构与曲率之间的关系

基本信息

  • 批准号:
    12440020
  • 负责人:
  • 金额:
    $ 4.86万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2003
  • 项目状态:
    已结题

项目摘要

T.Sakai, head investigator of this research program, has been working on the research theme : relationships between various metrical invariants of Riemannian manifolds, and their connection with the manifold structure. Under the support of the present Grant-in-Aid for Scientific Research, he especially studied the behavior of distance functions in Riemannian manifolds.1. He begun to study the structure of Riemannian manifolds admitting a function f whose gradient is of constant norm under the project title "Curvature and structure of spaces" supported by the Grant-in-Aid for Scientific Research (C) (2), Nr. 09640109 (1997-1998). This is one of the remarkable properties of distance functions. He obtained characterizations of model warped product cases as equality case of inequalities in terms of the Laplacian of f, and investigated the perturbed version of the result, where the Ricci curvature played an important role. Under the support of the present Grant-in-Aid, he was engaged with t … More he final step of this investigation.2. Morse theory for a distance function on a Riemannian manifold : Although distance function f from a point p of a compact Riemannian manifold M admits points where f is not differentiable, it was known that the notion of critical points may be introduced as in usual Morse theory. However, the notion of the index of critical points of distance functions was not clear, and Sakai considered with J. Itoh the case where the cut locus C(p) of p carries a nice non-degeneracy structure. They showed in this case that the cut locus admits the Whitney stratification and developed Morse theory for distance function introducing the notion of the index of critical points. On the other hand, it later turned out that there are related works by V. Gerschkovich and H. Rubinstein, and we need more examination on the problem. Sakai gave a theme on "metrical invariants and the structure theorems on Alexsandrov spaces" to a student of doctor course and through examination some results related to the spheres were obtained. Sakai also worked for publication of survey articles "Curvature --Until the twentieth century, and the future? ", and "Family of Riemannian manifolds with Ricci curvature bounded below and its limits".3. Research results of other investigators : Kiyohara determined the explicit structure of the cut locus of any point in ellipsoids. Katsuda studied the inverse problem of the Neumann boundary value problem, and Kasue investigated the spectral convergence of regular Dirichlet spaces including Riemannian manifolds, Riemannian polyhedra and sub-Riemannian manifolds. Shioya studied convergence and collapsing of Riemannian manifolds and spectrum of Laplacians. He also vigorously worked on geometry and analysis of Alexsandrov spaces. Tamura, studied Schroedinger operators and Dirac operators mainly from analytical viewpoint. Less
这个研究项目的首席研究员T.Sakai一直致力于这一研究主题:黎曼流形的各种度量不变量之间的关系,以及它们与流形结构的联系。在目前的科学研究资助计划的支持下,他特别研究了黎曼流形中距离函数的行为。他开始研究黎曼流形的结构,其中包含一个函数f,其梯度是常范数的,项目标题为“空间的曲率和结构”,由科学研究补助金(C)(2),编号09640109(1997年至1998年)资助。这是距离函数的显著性质之一。他利用f的拉普拉斯函数得到了模型翘曲乘积情形的等价情形的刻画,并研究了结果的扰动形式,其中Ricci曲率起了重要作用。在目前助学金的支持下,他受聘于t…更多的是这项调查的最后一步。关于黎曼流形上距离函数的Morse理论:虽然紧致黎曼流形上距离点p的距离函数f允许f不可微的点,但已知临界点的概念可以像通常的Morse理论那样被引入。然而,距离函数的临界点指数的概念并不明确,Sakai和J.Itoh考虑了p的割轨迹C(P)具有良好的非退化结构的情况。在这种情况下,他们证明了割轨迹允许惠特尼分层,并发展了距离函数的莫尔斯理论,引入了临界点指数的概念。另一方面,后来发现有V.Gerschkovich和H.Rubinstein的相关著作,我们需要对这个问题进行更多的审查。酒井给一位博士生讲授了“亚历山大空间上的度量不变量和结构定理”,并通过考试得到了一些与球面有关的结果。酒井还发表了综述文章《曲率--直到二十世纪,和未来?》,以及《黎曼流形家族的Ricci曲率有界低于及其极限》。其他研究人员的研究结果:清原确定了椭球体中任意点的切割轨迹的显式结构。Katsuda研究了Neumann边值问题的反问题,Kasue研究了包括黎曼流形、黎曼多面体和次黎曼流形在内的正则Dirichlet空间的谱收敛。Shioya研究了黎曼流形和拉普拉斯谱的收敛和崩溃。他还致力于亚历山大·桑德罗夫空间的几何和分析。Tamura,主要从解析的角度研究了薛定谔算子和狄拉克算子。较少

项目成果

期刊论文数量(112)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K.Shiohama, Takashi Shioya, M.Tanaka: "The Geometry of Total Curvature on Complete Open Surfaces"Cambridge Univ.Press (To appear). (2003)
K.Shiohama、Takashi Shioya、M.Tanaka:“完全开放曲面上总曲率的几何”剑桥大学出版社(待出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Takashi Sakai: "Curvature -- until the twentieth century, and the future?"Sugaku Exposition (Amer.Math.Soc.). (To appear).
Takashi Sakai:“曲率——直到二十世纪,以及未来?”朱乐博览会(Amer.Math.Soc.)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Ichinose, Hideo Tamura: "The norm convergence of the Trotter-Kato product formula with error bound"Comm.Math.Phys.(2001). 217. 489-502 (2001)
T.Ichinose、Hideo Tamura:“具有误差界限的 Trotter-Kato 乘积公式的范数收敛性”Comm.Math.Phys.(2001)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Kuwae, Takashi Shioya: "Sobolev and Dirichlet spaces over maps between metric spaces"J.Reine Angew.Math.. 555. 39-75 (2003)
K.Kuwae、Takashi Shioya:“度量空间之间的映射上的 Sobolev 和 Dirichlet 空间”J.Reine Angew.Math.. 555. 39-75 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Ichinose, Hideo Tamura: "The norm convergence of the Trotter-Kato product formula with error bound"Comm.Math.Phys.. 217. 489-502 (2001)
T.Ichinose、Hideo Tamura:“具有误差界的 Trotter-Kato 乘积公式的范数收敛性”Comm.Math.Phys.. 217. 489-502 (2001)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SAKAI Takashi其他文献

Rght to the City in the Era of Gentrification
绅士化时代的城市权利
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    NISHITANI Osamu;NAKAYAMA Chikako (as editors);田島 達也;川村邦光;田島 達也;NAKAYAMA Chikako;荻野美穂;成澤 勝嗣;NAKAYAMA Chikako;NAKAYAMA Chikako;島薗 進;五十嵐 公一;HAYASHI Midori;YONETANI Masafumi;杉原 達;五十嵐 公一;YONETANI Masafumi;野口 剛;中村生雄;井田 太郎;YONETANI Masafumi;赤坂 憲雄;大久保 純一;ABE Kenichi;Junichi Okubo;池上 良正;ABE Kenichi;島薗 進;並木 誠士;ABE Kenichi;Seishi Namiki;島薗 進;SAKAI Takashi
  • 通讯作者:
    SAKAI Takashi
鎮圧の後で
镇压后
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    NISHITANI Osamu;NAKAYAMA Chikako (as editors);田島 達也;川村邦光;田島 達也;NAKAYAMA Chikako;荻野美穂;成澤 勝嗣;NAKAYAMA Chikako;NAKAYAMA Chikako;島薗 進;五十嵐 公一;HAYASHI Midori;YONETANI Masafumi;杉原 達;五十嵐 公一;YONETANI Masafumi;野口 剛;中村生雄;井田 太郎;YONETANI Masafumi;赤坂 憲雄;大久保 純一;ABE Kenichi;Junichi Okubo;池上 良正;ABE Kenichi;島薗 進;並木 誠士;ABE Kenichi;Seishi Namiki;島薗 進;SAKAI Takashi;玉蟲 敏子;SAKAI Takashi;玉蟲 敏子;冨山 一郎;Satoko Tamamushi;SAKAI Takashi;冨山 一郎
  • 通讯作者:
    冨山 一郎
理性の探求(5)名づけと所有--アメリカという制度空間
理性探寻(五)命名与所有权--美国的制度空间
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    NISHITANI Osamu;NAKAYAMA Chikako (as editors);田島 達也;川村邦光;田島 達也;NAKAYAMA Chikako;荻野美穂;成澤 勝嗣;NAKAYAMA Chikako;NAKAYAMA Chikako;島薗 進;五十嵐 公一;HAYASHI Midori;YONETANI Masafumi;杉原 達;五十嵐 公一;YONETANI Masafumi;野口 剛;中村生雄;井田 太郎;YONETANI Masafumi;赤坂 憲雄;大久保 純一;ABE Kenichi;Junichi Okubo;池上 良正;ABE Kenichi;島薗 進;並木 誠士;ABE Kenichi;Seishi Namiki;島薗 進;SAKAI Takashi;玉蟲 敏子;SAKAI Takashi;玉蟲 敏子;冨山 一郎;Satoko Tamamushi;SAKAI Takashi;冨山 一郎;西谷 修;Satoko Tamamushi;玉蟲 敏子;中村生雄;西谷 修
  • 通讯作者:
    西谷 修
戦前の都市下層社会における貸し借りの論理――赤松啓介「非常民の民俗学」の記録を通して
战前城市下层社会的借贷逻辑——从赤松圭介《流民民间传说》的记录
<古代>の表象
<古代>的代表
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    NISHITANI Osamu;NAKAYAMA Chikako (as editors);田島 達也;川村邦光;田島 達也;NAKAYAMA Chikako;荻野美穂;成澤 勝嗣;NAKAYAMA Chikako;NAKAYAMA Chikako;島薗 進;五十嵐 公一;HAYASHI Midori;YONETANI Masafumi;杉原 達;五十嵐 公一;YONETANI Masafumi;野口 剛;中村生雄;井田 太郎;YONETANI Masafumi;赤坂 憲雄;大久保 純一;ABE Kenichi;Junichi Okubo;池上 良正;ABE Kenichi;島薗 進;並木 誠士;ABE Kenichi;Seishi Namiki;島薗 進;SAKAI Takashi;玉蟲 敏子;SAKAI Takashi;玉蟲 敏子;冨山 一郎;Satoko Tamamushi;SAKAI Takashi;冨山 一郎;西谷 修;Satoko Tamamushi;玉蟲 敏子;中村生雄
  • 通讯作者:
    中村生雄

SAKAI Takashi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SAKAI Takashi', 18)}}的其他基金

Evaluation of hip translation in the native hips and treatment of the hip diseases
原生髋关节平移评价及髋关节疾病治疗
  • 批准号:
    16K10819
  • 财政年份:
    2016
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on special Lagrangian submanifolds and their singularities
特殊拉格朗日子流形及其奇点研究
  • 批准号:
    26400073
  • 财政年份:
    2014
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fractal Analysis and Fast Fourier Transform Analysis for Healing Irregularity
修复不规则性的分形分析和快速傅里叶变换分析
  • 批准号:
    24603023
  • 财政年份:
    2012
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on special Lagrangian submanifolds in non-flat Calabi-Yau manifolds
非平坦Calabi-Yau流形中特殊拉格朗日子流形的研究
  • 批准号:
    23740057
  • 财政年份:
    2011
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Studies on signaling pathways mediated by Nucling, a novel apoptosis-associating protein, in the development of inflammatory disorders and tumors
Nucling(一种新型凋亡相关蛋白)介导的信号通路在炎症性疾病和肿瘤发展中的研究
  • 批准号:
    22590286
  • 财政年份:
    2010
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development ofin vivo Hip Kinematics Evaluation System
体内髋关节运动学评估系统的开发
  • 批准号:
    22591633
  • 财政年份:
    2010
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometry of weakly reflective submanifolds
弱反射子流形的几何结构
  • 批准号:
    20740044
  • 财政年份:
    2008
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Metric invariants and space structures
度量不变量和空间结构
  • 批准号:
    17540079
  • 财政年份:
    2005
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Porous Ceramic-Immobilized Lipase Catalyst and Optically Active Fluorinated supramolecules
多孔陶瓷固定化脂肪酶催化剂及光学活性含氟超分子的研制
  • 批准号:
    13555255
  • 财政年份:
    2001
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Efficient Preparation of Optically Active Highly Strained Azirines and Synthesis of Natural and Unnatural Amines and Amino Acids
光学活性高应变氮丙啶的高效制备以及天然和非天然胺和氨基酸的合成
  • 批准号:
    12450366
  • 财政年份:
    2000
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Geometry and collapsing theory of Alexandrov spaces
亚历山德罗夫空间的几何和塌陷理论
  • 批准号:
    22KJ2099
  • 财政年份:
    2023
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
On collapsing of Alexandrov spaces and geometry of metric currents
关于亚历山德罗夫空间的崩溃和度量电流的几何
  • 批准号:
    15K17529
  • 财政年份:
    2015
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
New development of Lipschitz structure/collapsing theory of Alexandrov spaces and inverse spectral problem
Lipschitz结构/Alexandrov空间塌陷理论与逆谱问题的新进展
  • 批准号:
    26287010
  • 财政年份:
    2014
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Optimal mass transport on Alexandrov spaces and Ricci curvature
Alexandrov 空间和 Ricci 曲率上的最优质量传输
  • 批准号:
    20540058
  • 财政年份:
    2008
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theory of collapsing Riemannian manifolds and geometry of Alexandrov spaces
坍缩黎曼流形理论和亚历山德罗夫空间几何
  • 批准号:
    13440024
  • 财政年份:
    2001
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analysis on Alexandrov Spaces
Alexandrov空间分析
  • 批准号:
    11440023
  • 财政年份:
    1999
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collapsing Theory of 4-manifolds and the geometry of Alexandrov Spaces
4流形的塌缩理论和Alexandrov空间的几何
  • 批准号:
    10440023
  • 财政年份:
    1998
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
Convergence Theory for Alexandrov Spaces
Alexandrov 空间的收敛理论
  • 批准号:
    06640155
  • 财政年份:
    1994
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了