Autonomous Formation of Spatial Structures in Solutions of Parabolic Partial Differential Equations

抛物型偏微分方程解中空间结构的自主形成

基本信息

  • 批准号:
    13440050
  • 负责人:
  • 金额:
    $ 9.28万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2004
  • 项目状态:
    已结题

项目摘要

This objective of this project is to pursue the behavior of solutions of nonlinear partial differential equations of parabolic type.In collaboration with Wei-Ming Ni (University of Minnesota) and Kanako Suzuki (Tohoku University), Takagi studied the behavior of solutions of a reaction-diffusion system of activator-inhibitor type proposed by Gierer and Meinhardt and obtained the following results : (i)In the case where the initial data are constant functions, there exist solutions blowing up in finite time if the activator activates the its production stronger than that of the inhibitor. There are two types of blow-up solutions. Either (a) only the activator blows up or (b) both the activator and the inhibitor blow up. In the former case, we can choose the initial value so that the inhibitor converges to any specified positive number. (ii)In the case where the equation for the activator does not contain the source term, no solution blows up in finite time if the activator produces the inhibitor more than itself. Moreover, in this case the collapse of patterns can occur. Here, by the collapse of patterns we mean that the solution converges to the origin as the time variable tends to infinity.Nishiura studied scattering phenomena of pulse solutions and spot solutions. He found that various input/output relationships can be formed depending on the local dynamics in the neighborhood of unstable steady-states or periodic solutions and on the location of solution orbits.Yanagida considered a certain quasilinear parabolic equation and showed that the solution is either (a) globally increasing, (b) a traveling wave, or (c) extinct in finite time, depending on the initial data. The asymptotic behavior of the solution is also investigated.Kozono proved that in three dimensional exterior domains one can construct weak solutions of the Navier-Stokes equations which satisfy the strong energy inequality for all square-integrable initial data.
本计画的目标是探讨非线性抛物型偏微分方程解的性质。(明尼苏达大学)和Kanako Suzuki(东北大学),高木研究了由Gierer和Meinhardt提出的活化剂-抑制剂型反应扩散系统的解的行为,并获得了以下结果:(i)在初始数据为常数函数的情况下,如果激活剂的激活作用强于抑制剂,则存在解在有限时间内爆破。有两种类型的爆破解决方案。或者(a)仅激活剂爆破,或者(B)激活剂和抑制剂都爆破。在前一种情况下,我们可以选择初始值,使抑制收敛到任何指定的正数。(ii)在活化剂的方程不包含源项的情况下,如果活化剂产生的抑制剂多于其自身,则没有解在有限时间内爆破。此外,在这种情况下,模式的崩溃可能发生。在这里,我们的意思是崩溃的模式,解决方案收敛到原点的时间变量趋于无穷大。西浦研究了脉冲解决方案和斑点解决方案的散射现象。他发现,各种输入/输出关系可以形成取决于当地的动态在附近的不稳定的稳定状态或周期性的解决方案和对位置的解决方案orbers.Yanagida考虑了一定的准线性抛物方程,并表明,解决方案是(a)全球增加,(B)行波,或(c)灭绝在有限的时间,这取决于初始数据。Kozono证明了在三维外部区域上,对于所有平方可积的初值,可以构造出满足强能量不等式的Navier-Stokes方程的弱解。

项目成果

期刊论文数量(58)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fumihiko Nakano: "Absence of transport in Anderson localization"Reviews in Mathematical Physics. 14(4). 375-407 (2002)
Fumihiko Nakano:“安德森本地化中缺乏传输”数学物理评论。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.J.Choe, H.Kozono: "Stokes problem for Lipshitz domain"Indiana Univ.Math.J.. 51. 1235-1260 (2002)
H.J.Choe、H.Kozono:“Lipshitz 域的斯托克斯问题”Indiana Univ.Math.J.. 51. 1235-1260 (2002)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Dynamic transitions through scatters in dissipative systems
通过耗散系统中的散射进行动态转变
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y.Nishiura;T.Teramoto;K.-I.Ueda
  • 通讯作者:
    K.-I.Ueda
M.Kuwamura, E.Yanagida: "The Eckhaus and zigzag instability criteria in gradient/skew-gradient dissipative systems"Physica D. 175. 186-195 (2003)
M.Kuwamura、E.Yanagida:“梯度/斜梯度耗散系统中的 Eckhaus 和锯齿形不稳定准则”Physica D. 175. 186-195 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Yagisita, E.Yanagida: "A remark on stable subharmonic solutions of time-periodic reaction-diffusion equations"J.Math.Anal.Appl.. 286. 795-803 (2003)
H.Yagisita,E.Yanagida:“关于时间周期反应扩散方程的稳定次谐波解的评论”J.Math.Anal.Appl.. 286. 795-803 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TAKAGI Izumi其他文献

TAKAGI Izumi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TAKAGI Izumi', 18)}}的其他基金

Turing's Diffusion-Driven-Instability Revisited-from a view point of global structure of solution sets
重温图灵扩散驱动的不稳定性——从解集全局结构的角度
  • 批准号:
    24654037
  • 财政年份:
    2012
  • 资助金额:
    $ 9.28万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Theory of Differential Equations Applied to Biological Pattern Formation--from Analysis to Synthesis
微分方程理论在生物模式形成中的应用--从分析到综合
  • 批准号:
    22244010
  • 财政年份:
    2010
  • 资助金额:
    $ 9.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Mathematical analysis of dendritic crystal growth
枝晶生长的数学分析
  • 批准号:
    21654024
  • 财政年份:
    2009
  • 资助金额:
    $ 9.28万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Qualitative Properties of Solutions of Differential Equations Modeling Biological Pattern Formation
模拟生物模式形成的微分方程解的定性性质
  • 批准号:
    18204010
  • 财政年份:
    2006
  • 资助金额:
    $ 9.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Singularly perturbed solutions of reaction-diffusion systems and concentration phenomena
反应扩散系统和浓度现象的奇扰动解
  • 批准号:
    09440046
  • 财政年份:
    1997
  • 资助金额:
    $ 9.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids
模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析
  • 批准号:
    2409989
  • 财政年份:
    2024
  • 资助金额:
    $ 9.28万
  • 项目类别:
    Standard Grant
Observation of pattern formation in low-energy electron diffraction (LEED) under single electron incidence conditions
单电子入射条件下低能电子衍射 (LEED) 图案形成的观察
  • 批准号:
    23K11711
  • 财政年份:
    2023
  • 资助金额:
    $ 9.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of the effect of integral kernel shape on pattern formation in nonlocal reaction-diffusion equations
积分核形状对非局部反应扩散方程模式形成的影响分析
  • 批准号:
    23K13013
  • 财政年份:
    2023
  • 资助金额:
    $ 9.28万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Pattern formation in drying bio-fluid droplets: From Fundamentals to Data-driven Disease Screening
干燥生物液滴的模式形成:从基础知识到数据驱动的疾病筛查
  • 批准号:
    23KF0104
  • 财政年份:
    2023
  • 资助金额:
    $ 9.28万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Establishment of a new epidermal culture focusing on keratinocyte pattern formation
建立专注于角质形成细胞模式形成的新型表皮培养物
  • 批准号:
    23K15277
  • 财政年份:
    2023
  • 资助金额:
    $ 9.28万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Biological Pattern Formation
生物模式的形成
  • 批准号:
    2787663
  • 财政年份:
    2023
  • 资助金额:
    $ 9.28万
  • 项目类别:
    Studentship
CAREER: Pattern formation in singularly perturbed partial differential equations
职业:奇异摄动偏微分方程中的模式形成
  • 批准号:
    2238127
  • 财政年份:
    2023
  • 资助金额:
    $ 9.28万
  • 项目类别:
    Continuing Grant
Geometric and numerical studies of the behavior and pattern formation of powders and charged particles under periodic external forces
粉末和带电粒子在周期性外力作用下的行为和图案形成的几何和数值研究
  • 批准号:
    23K03260
  • 财政年份:
    2023
  • 资助金额:
    $ 9.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spatial Control of Pattern Formation in Early Vertebrate Development
早期脊椎动物发育中模式形成的空间控制
  • 批准号:
    10673415
  • 财政年份:
    2022
  • 资助金额:
    $ 9.28万
  • 项目类别:
Bulk-Interface Coupled Response in Novel Materials: Pattern Formation and Interactive Migration
新型材料中的体界面耦合响应:图案形成和交互式迁移
  • 批准号:
    2204288
  • 财政年份:
    2022
  • 资助金额:
    $ 9.28万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了