Combinatorial Representation Theory which Center of Schur Functions

以Schur函数为中心的组合表示论

基本信息

  • 批准号:
    15540030
  • 负责人:
  • 金额:
    $ 1.86万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2004
  • 项目状态:
    已结题

项目摘要

This is an effort for understanding the role of Schur functions and Schur's Q functions, the projective analogue of Schur functions, in representation theory. To be more precise, we proved the following theorem. Schur functions associated with the rectangular Young diagrams occur as weight vectors of the basic representation of the affine Lie algebra of type D^{(2)}_2. And also, they turn out to be the homogeneous tau functions of the nonlinear Schroedinger hierarchy. The key idea for proving the above is to write down the representation spaces and operators in terms of fermions, and derive polynomials via the boson-fermion correspondence. We have succeeded in verifying the similar phenomena for the case of the affine Lie algebra of type A^{(2)}_2. In 2004 we considered the following problem. Clarify the nature of the coefficients in the 2 reduced Schur functions when expanded in terms of Schur's Q functions. Through some experimental computations in small rank cases, I had been convinced that these coefficients are of great interests, both from representation theoretical and combinatorial points of view. Finally we realized that these coefficients are nothing but the so-called Stembridge numbers. As a result we could relate these numbers with the representation theory of affine Lie algebras. Looking carefully at the table of these numbers, we found a simple formula for the elementary divisors of the Cartan matrices of the symmetric groups. More than 10 years ago, Olsson in Copenhagen gave a formula for those, which is expressed in terms of a generating function and is rather complicated. Our version is more direct and combinatorial.
这是一个努力理解的作用舒尔职能和舒尔的Q职能,投影模拟舒尔职能,在表示论。为了更准确地说明,我们证明了下面的定理。与矩形Young图相关的Schur函数作为D^{(2)}_2型仿射李代数的基本表示的权向量出现。同时,它们也是非线性薛定谔族的齐次τ函数。证明上述问题的关键思想是用费米子来表示表示空间和算符,并通过玻色子-费米子对应导出多项式。我们成功地证明了A^{(2)}_2型仿射李代数的类似现象。2004年,我们考虑了以下问题。阐明了在2个约化Schur函数中的系数在Schur的Q函数方面展开时的性质。通过在小秩情况下的一些实验计算,我已经确信,这些系数是极大的兴趣,无论是从表示理论和组合的观点。最后,我们意识到这些系数只不过是所谓的Stembridge数。因此,我们可以将这些数与仿射李代数的表示理论联系起来。仔细观察这些数字的表,我们发现了对称群的Cartan矩阵的基本因子的简单公式。10多年前,Olsson在哥本哈根给出了一个公式,这个公式是用母函数表示的,相当复杂。我们的版本更直接和组合。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rectangular Schur functions and the basic representations of affine Lie algebras
矩形 Schur 函数和仿射李代数的基本表示
Rectangular Schur functions and fermions
矩形 Schur 函数和费米子
池田岳 他: "Rectangular Schur functions and fermions"Proceadings "International Conference on Formal Power Series and Algebraic combinatorics". (to appear).
Gaku Ikeda等人:《矩形舒尔函数和费米子》论文集《形式幂级数和代数组合学国际会议》(待发表)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Rectangular Schur function and the basic representations of affine Lie algebras
矩形Schur函数和仿射李代数的基本表示
水川裕司, 山田裕史: "Rectangular Schur functions and the basic representations of affine hie algebras"Discrete Methematics. (to appear).
Yuji Mizukawa、Hiroshi Yamada:“矩形 Schur 函数和仿射代数的基本表示”离散数学(即将出现)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YAMADA Hirofumi其他文献

YAMADA Hirofumi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YAMADA Hirofumi', 18)}}的其他基金

Direct visualization of molecular recognition forces by high-resolution atomic force microscopy and spectroscopy
通过高分辨率原子力显微镜和光谱法直接可视化分子识别力
  • 批准号:
    17H06122
  • 财政年份:
    2017
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Application of 3-dimensional force mapping method to the measurement of biomolecule fluctuations
三维力图法在生物分子波动测量中的应用
  • 批准号:
    26600101
  • 财政年份:
    2014
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Molecular-scale functional visualization of bio- and nano-materials by AFM functional probes
通过 AFM 功能探针对生物和纳米材料进行分子尺度功能可视化
  • 批准号:
    24221008
  • 财政年份:
    2012
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Construction of creative education network to train global competitiveness
构建创意教育网络,培养全球竞争力
  • 批准号:
    24300276
  • 财政年份:
    2012
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of educational system to evade Japan-Passing
发展教育体系以逃避“日本越境”
  • 批准号:
    23650557
  • 财政年份:
    2011
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
From modular representations of the symmetric groups to nonlinear differential equations
从对称群的模表示到非线性微分方程
  • 批准号:
    21540016
  • 财政年份:
    2009
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction of creative education network to acquire global competitiveness
构建创意教育网络,获取全球竞争力
  • 批准号:
    21300297
  • 财政年份:
    2009
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
From modular representations of the symmetric groups to integrable systems
从对称群的模块化表示到可积系统
  • 批准号:
    19540031
  • 财政年份:
    2007
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Proximal multi-probe measurement and control method for nanometer-scale strrctures based on frequency modulation AFM
基于调频AFM的纳米结构近端多探针测控方法
  • 批准号:
    19106001
  • 财政年份:
    2007
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Construction of Engineering Education Network with International Exchange by Game Activity
以游戏活动构建国际交流的工程教育网络
  • 批准号:
    18300270
  • 财政年份:
    2006
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Tensor and wreath products of symmetric groups
对称群的张量和花环积
  • 批准号:
    EP/V00090X/1
  • 财政年份:
    2021
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Fellowship
Study of special blocks of spin symmetric groups for irreducible representations and derived equivalences
研究不可约表示和导出等价的自旋对称群的特殊块
  • 批准号:
    20K03506
  • 财政年份:
    2020
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Representations of symmetric groups, wreath products of symmetric groups and related diagram algebras
对称群的表示、对称群的花圈积及相关图代数
  • 批准号:
    2289820
  • 财政年份:
    2019
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Studentship
Representation Theory of the Partition Algebras and Symmetric Groups
配分代数和对称群的表示论
  • 批准号:
    2117788
  • 财政年份:
    2018
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Studentship
Exponents for representations of the symmetric groups and modular forms
对称群和模形式表示的指数
  • 批准号:
    527759-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.86万
  • 项目类别:
    University Undergraduate Student Research Awards
From spin representations of the symmetric groups to Hirota equations
从对称群的自旋表示到 Hirota 方程
  • 批准号:
    17K05180
  • 财政年份:
    2017
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Determining values of the decomposition matrix of the symmetric groups
确定对称群分解矩阵的值
  • 批准号:
    495485-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Modular representations of symmetric groups
对称群的模表示
  • 批准号:
    483007-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 1.86万
  • 项目类别:
    University Undergraduate Student Research Awards
Topology of Hessenberg varieties and representations of symmetric groups
Hessenberg簇的拓扑和对称群的表示
  • 批准号:
    15K17544
  • 财政年份:
    2015
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Graded representations of symmetric groups and related algebras
对称群及相关代数的分级表示
  • 批准号:
    EP/L027283/1
  • 财政年份:
    2014
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了