Research on various geometric structures on 3-manifolds
3-流形上的各种几何结构研究
基本信息
- 批准号:15540073
- 负责人:
- 金额:$ 1.34万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1.Morimoto's Conjecture on the tunnel numbers of composite knots in 3-manifoldsLet t(K) be the tunnel number of a knot K in a 3-manifold. Suppose for m-small knots K_1,…,K_n, the super additivity of tunnel number does not hold for #^n_<i=1> K_i, Then we proved that there exists a subset I of {1,【triple bond】,n} such that #_<i∈1>/K_i admits a primitive meridian.2.The growth rate of tunnel number of knotsFor a knot K in a 3-manifold M, we defined a numerical invariant called the growth rate of the tunnel numbers of K, and proved the following.Suppose that the Heegaard genus of K is greater than the Heegaard genus of M. Then the growth rate of the tunnel numbers of K is less than 1.3.Gersten's Problem for automatic groupGersten posed the following problem "Each automatic group is eithr (1)a finite group, (2)contains free abelian group of rank 2,or (3)a word hyperbolic group." We showed that for a class of automatic group (called n-starred groups) this problem is solved affirmatively.4.Heegaard gradients Seifert fibered spacesWe completely determined for which Seifert fibered space, the Heegaard gradient vanish.
1.Morimoto关于3-流形中复合结点隧道数的猜想设t(K)为3-流形中结点K的隧道数。假设对于m个小结点K_1,…,K_n,对于#^n_<i=1> K_i,隧道数的超可加性不成立,则证明了{1,【三键】,n}存在一个子集i,使得#_<i∈1>/K_i允许一个原始子午线。对于3流形M中的结点K,我们定义了一个称为K的隧道数增长率的数值不变量,并证明了以下几点。假设K的Heegaard属大于m的Heegaard属,则K隧道数的增长率小于1.3。Gersten提出了以下问题:“每个自动群要么是(1)一个有限群,(2)包含秩为2的自由阿贝尔群,要么(3)一个词双曲群。”我们证明了对于一类自动群(称为n星群),这个问题是肯定解决的。当我们完全确定了哪个空间是塞弗特纤维化的,赫格特梯度就消失了。
项目成果
期刊论文数量(54)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Locally thin position for a link
链接的局部薄位置
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:Kobayashi;Teiichi;Minyou Katagiri;T.Shibata;Tsuyoshi Kobayashi;T.Kobayashi;Tsuyoshi Kobayashi;S.Matsumoto;T.Inaba;Kazuhiro Ichihara;Tsuyoshi Kobayashi
- 通讯作者:Tsuyoshi Kobayashi
Kazuhiro Ichihara, Masakazu Teragaito: "Klein bottle surgery and genera of knots"Pacific J.Math.. 210(2). 317-333 (2003)
Kazuhiro Ichihara、Masakazu Teragaito:“克莱因瓶手术和结属”Pacific J.Math.. 210(2)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
On conformally flat critical Riemannian metrics for a curvature functional
- DOI:10.3792/pjaa.81.27
- 发表时间:2005-02
- 期刊:
- 影响因子:0
- 作者:M. Katagiri
- 通讯作者:M. Katagiri
Heegaard gradient of Seifert fibered 3-manifolds
Seifert 纤维 3 流形的 Heegaard 梯度
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Tomohisa Inoue;Juno Mukai;Kazuhiro Ichihara
- 通讯作者:Kazuhiro Ichihara
Local detection of strongly irreducible Heegaard splittings via knot exteriors
通过结外部局部检测强不可约 Heegaard 分裂
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Kobayashi;Teiichi;Minyou Katagiri;T.Shibata;Tsuyoshi Kobayashi
- 通讯作者:Tsuyoshi Kobayashi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KOBAYASHI Tsuyoshi其他文献
KOBAYASHI Tsuyoshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KOBAYASHI Tsuyoshi', 18)}}的其他基金
Development of the novel molecular targeted therapy against hepatocellular carcinoma invasion and metastasis
新型抗肝细胞癌侵袭转移分子靶向治疗药物的研究进展
- 批准号:
21791288 - 财政年份:2009
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
On developments and applications of Heegaard theory
论Heegaard理论的发展与应用
- 批准号:
21540082 - 财政年份:2009
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on 3-manifolds based on geometric techniques and its expanse
基于几何技术的3-流形及其展开研究
- 批准号:
19540083 - 财政年份:2007
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric structures of 3-manifolds and various related structures
三流形的几何结构及各种相关结构
- 批准号:
17540077 - 财政年份:2005
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representations of 3-manifolds and geometric informations derived from them
3-流形的表示以及从它们导出的几何信息
- 批准号:
12640071 - 财政年份:2000
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Combinatorial structures of low dimensional manifolds
低维流形的组合结构
- 批准号:
10640076 - 财政年份:1998
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Generic Flows, Ricci Curvature, Heegaard Splittings, and Nodal Sets
通用流、Ricci 曲率、Heegaard 分裂和节点集
- 批准号:
1404540 - 财政年份:2015
- 资助金额:
$ 1.34万 - 项目类别:
Continuing Grant
The mapping class groups of Heegaard splittings
Heegaard 分裂的映射类组
- 批准号:
26800028 - 财政年份:2014
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Research on distances of Heegaard splittings of 3-manifolds and bridge splittings of links
三流道Heegaard分裂距离及连杆桥分裂的研究
- 批准号:
25887039 - 财政年份:2013
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
3-Manifolds: Heegaard Splittings, the Curve Complex, and Hyperbolic Geometry
3-流形:Heegaard 分裂、复合曲线和双曲几何
- 批准号:
1308209 - 财政年份:2013
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant
Heegaard Splittings, Knots and 3-Manifolds
Heegaard 分裂、结和 3 流形
- 批准号:
1207765 - 财政年份:2012
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant
The Geometry and Topology of Heegaard Splittings
Heegaard 分裂的几何和拓扑
- 批准号:
1006369 - 财政年份:2010
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant
EAPSI: Alpha-sloped Heegaard splittings and the generalized Berge conjecture
EAPSI:阿尔法斜 Heegaard 分裂和广义 Berge 猜想
- 批准号:
1015083 - 财政年份:2010
- 资助金额:
$ 1.34万 - 项目类别:
Fellowship Award
3 Dimensional Geometry, Heegaard Splittings and Rank of the Fundamental Group
3 维几何、Heegaard 分裂和基本群的秩
- 批准号:
0939587 - 财政年份:2008
- 资助金额:
$ 1.34万 - 项目类别:
Continuing Grant
3 Dimensional Geometry, Heegaard Splittings and Rank of the Fundamental Group
3 维几何、Heegaard 分裂和基本群的秩
- 批准号:
0706878 - 财政年份:2007
- 资助金额:
$ 1.34万 - 项目类别:
Continuing Grant
Knots, Heegaard Splittings and Width Complexes
结、Heegaard 裂口和宽度复合体
- 批准号:
0603736 - 财政年份:2006
- 资助金额:
$ 1.34万 - 项目类别:
Continuing Grant














{{item.name}}会员




