Combinatorial structures of low dimensional manifolds
低维流形的组合结构
基本信息
- 批准号:10640076
- 负责人:
- 金额:$ 2.43万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recently "low dimensional topology theory" is far going out of the framework of "geometry" and finding out intimate relations between group theory, complex analysis, dynamical system, and even some fields out of mathematics like theoretical physics, and computer science. Within the relations, there are many (very huge, in general) combinatorial structures, for example, train tracks which give coordinates on Teichmuller spaces, canonical decomposition of hyperbolic 3-manifolds by ideal cells (Epstein-Penner), constructions of representations of Hecke algebra by Young diagram (Jones), automatic group theory (Thurston), and normal surface theory by Haken. In connection with these phenomena, it seems that recent development of low dimensional topology and of computer enables us to treat these objects directly and concretely.In view of these situations, in this research, we intended to study 2 and 3 dimensional manifolds from geometrical can combinatorial viewpoint. Concretely speaking, we studied about the following topics.・Analyzing 3-manifolds and knots via Heegaard splitting (particularly, with using "graphic" introduced by Rubinstein- Scharlemann), and obtaining useful informations on unknotting tunnels of knots,・Studying hyperbolic structures on 3-manifolds via triangulations, particularly on hyperbolic structures on 2-bridge knot complements starting from a very simple hyperbolic structure,・Studying about the relations between moduli spaces of certain kind of Riemannian metrics of 3-manifolds and geometric structures,・Studying about algorithms (that the computer can handle) to decompose the attaching homeomorphisms of the given Heegaard splittings into canonical Dehn twists.
近年来,“低维拓扑理论”正在走出“几何”的框架,与群论、复分析、动力系统,甚至与理论物理、计算机科学等数学之外的领域有着密切的联系。在关系中,有许多(非常巨大的,在一般情况下)组合结构,例如,火车轨道,使坐标Teichmuller空间,规范分解的双曲3-流形的理想细胞(爱泼斯坦-彭纳),建设的代表Hecke代数的杨图(琼斯),自动群论(瑟斯顿),和正常的表面理论的哈肯。与这些现象相联系的是,近年来低维拓扑学和计算机的发展使我们能够直接具体地处理这些问题,鉴于这些情况,本研究拟从几何能组合的观点来研究2维和3维流形。具体而言,我们研究了以下主题。·用Heegaard分裂分析三维流形和纽结·通过三角剖分研究3-流形上的双曲结构,特别是从一个非常简单的双曲结构开始研究2-桥纽结补上的双曲结构,·研究三维流形的某种黎曼度量的模空间与几何结构之间的关系;·研究将给定Heegaard分裂的附加同胚分解为标准Dehn扭的算法(计算机可以处理)。
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Masaak Wada: "A generalization of the Schwarzian via Clifford numbers"Ann. Acad. Sci. Fenn.. 23. 453-460 (1998)
Masaak Wada:“通过 Clifford 数对 Schwarzian 的概括”Ann。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Tsuyoshi Kobayashi: "Rubinstem-Scharlemann graphicfor3-manifold as the discriminant set of a stable map"Pacific J.Math. (掲載予定).
Tsuyoshi Kobayashi:“Rubinstem-Scharlemann 图形作为稳定映射的判别集”Pacific J.Math(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Minnyou Katagiri: "On the topology of the moduli space of negative constant curvature metrics on a Haken manifold"Proc.of the Japan Acad.. 75. 126-128 (1999)
Minnyou Katagiri:“关于 Haken 流形上负常曲率度量的模空间的拓扑”Proc.of the Japan Acad.. 75. 126-128 (1999)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Minnyou Katagiri: "On deformations of Einstein-Weyl structures"Tokyo J. Math.. 21. 457-461 (1998)
Minnyou Katagiri:“论爱因斯坦-韦尔结构的变形”Tokyo J. Math.. 21. 457-461 (1998)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Minnyou Katagiri: "On deformations of Einstein-Weyl structures"Tokyo J.Math.. 21. 457-461 (1998)
Minnyou Katagiri:“论爱因斯坦-韦尔结构的变形”Tokyo J.Math.. 21. 457-461 (1998)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KOBAYASHI Tsuyoshi其他文献
KOBAYASHI Tsuyoshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KOBAYASHI Tsuyoshi', 18)}}的其他基金
Development of the novel molecular targeted therapy against hepatocellular carcinoma invasion and metastasis
新型抗肝细胞癌侵袭转移分子靶向治疗药物的研究进展
- 批准号:
21791288 - 财政年份:2009
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
On developments and applications of Heegaard theory
论Heegaard理论的发展与应用
- 批准号:
21540082 - 财政年份:2009
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on 3-manifolds based on geometric techniques and its expanse
基于几何技术的3-流形及其展开研究
- 批准号:
19540083 - 财政年份:2007
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric structures of 3-manifolds and various related structures
三流形的几何结构及各种相关结构
- 批准号:
17540077 - 财政年份:2005
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on various geometric structures on 3-manifolds
3-流形上的各种几何结构研究
- 批准号:
15540073 - 财政年份:2003
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representations of 3-manifolds and geometric informations derived from them
3-流形的表示以及从它们导出的几何信息
- 批准号:
12640071 - 财政年份:2000
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
Fibered纽结的自同胚、Floer同调与4维亏格
- 批准号:12301086
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
RUI: Pure and Applied Knot Theory: Skeins, Hyperbolic Volumes, and Biopolymers
RUI:纯结理论和应用结理论:绞纱、双曲体积和生物聚合物
- 批准号:
2305414 - 财政年份:2023
- 资助金额:
$ 2.43万 - 项目类别:
Standard Grant
Role of secreted cystine-knot proteins in Histoplasma-host interactions
分泌型胱氨酸结蛋白在组织胞浆菌-宿主相互作用中的作用
- 批准号:
10681823 - 财政年份:2023
- 资助金额:
$ 2.43万 - 项目类别:
Knot invariants and algebraic combinatorics
结不变量和代数组合
- 批准号:
23K03108 - 财政年份:2023
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ARTS: Deploying integrative systematics to untangle Lucidota, the Gordian knot of Neotropical firefly taxonomy.
艺术:运用综合系统学来解开新热带萤火虫分类学的棘手难题 Lucidota。
- 批准号:
2323041 - 财政年份:2023
- 资助金额:
$ 2.43万 - 项目类别:
Standard Grant
Knot theory and low-dimensional topology
纽结理论和低维拓扑
- 批准号:
RGPIN-2021-04229 - 财政年份:2022
- 资助金额:
$ 2.43万 - 项目类别:
Discovery Grants Program - Individual
Knot Homology and Moduli of Sheaves
绳轮的结同源性和模量
- 批准号:
2200798 - 财政年份:2022
- 资助金额:
$ 2.43万 - 项目类别:
Continuing Grant
開4次元多様体に対するゲージ理論とその応用
规范理论及其在开四维流形中的应用
- 批准号:
22K13921 - 财政年份:2022
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
String theory, knot theory, thermal QCD and string cosmology
弦理论、纽结理论、热 QCD 和弦宇宙学
- 批准号:
SAPIN-2019-00039 - 财政年份:2022
- 资助金额:
$ 2.43万 - 项目类别:
Subatomic Physics Envelope - Individual
A characterization of a ribbon knot and its presentation by making use of a surface
丝带结的表征及其利用表面的呈现
- 批准号:
22K03310 - 财政年份:2022
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
LEAPS-MPS: DNA Knot Shadows Explorations
LEAPS-MPS:DNA 结阴影探索
- 批准号:
2137739 - 财政年份:2022
- 资助金额:
$ 2.43万 - 项目类别:
Standard Grant














{{item.name}}会员




