Stochastic analysis and its application to analysis of differential operators
随机分析及其在微分算子分析中的应用
基本信息
- 批准号:15540116
- 负责人:
- 金额:$ 2.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The stochastic differential equation for the Brownian motion on the Poincare upper half plane (the hyperbolic plane), a diffusion process generated by a half of the Laplacian, is explicitly solved and we have an concrete representation for the Brownian motion as a Wiener functional. In this research, as an extension of this known fact, we showed that the horizontal life of the Brownian motion to the bundle of orthonormal frames also has an expression as a Wiener functional. Based on this representation, we may show a probabilistic representation for the heat kernel of the Laplacian acting on the differential forms and give a proof of the Selberg trace formula for the differential 1-forms on a compact Riemannian surface, which may be given as a quotient space of the upper half plane by a hyperbolic discrete subgroup of the isometry group. This is an analytic and/or geometric proof and we do not need the harmonic analysis. Moreover we have obtained the Selberg trace formula in a very exp … More licit form, since we have restrict ourselves to the two-dimensional case.The research for an extension to the general dimension case has been continued. In the two dimensional case, we can represent the rotation part of the horizontal lift by using an auxiliary one-dimensional Brownian motion and this representation plays a crucial role. We have not found a corresponding representation and this should be the next task. If we find such a representation, we will be able to give a proof for the Selberg trace formula following the idea of McKean which has been the basis of this research.When we apply probability theory to the analysis on the upper half plane, the exponential Wiener functionals which is an integral of a geometric Brownian motion appear. Some studies on these functionals has been continued since the Wiener functionals of the same type also appear in the theory of Mathematical Finance and a study for some diffusion processes in random environments. In a joint project with Professot YOR, who is a foreign co-worker in thie research, we gathered some results and applications of these exponential Wiener functionals and gave an insight from analytic point of view. The results have been published in a journal. Less
在繁殖力上半平面上的布朗运动的随机微分方程(双曲平面)是由Laplacian的一半产生的差异过程,明确解决了,我们具有布朗尼运动作为维也纳功能的混凝土表示。在这项研究中,作为这一已知事实的扩展,我们表明,布朗运动向正统框架束的水平寿命也表达为Wiener功能。基于此表示,我们可能会显示出作用于差异形式的拉普拉斯的热核的概率表示,并证明了Selberg Trace公式在紧凑的Riemannian表面上的差分1形式,可以通过均值依次依次的依次分组的差异平面给出,这可以作为上半平面的引号给出。这是一个分析和/或几何证明,我们不需要谐波分析。此外,我们已经以非常有载体的形式获得了Selberg Trace公式,因为我们将自己限制在二维案例中。延伸到一般维度案例的研究已经继续进行。在两个维度的情况下,我们可以使用辅助一维的布朗运动来表示水平升降的旋转部分,并且这种表示起着至关重要的作用。我们尚未找到相应的表示形式,这应该是下一个任务。如果我们找到了这样的表示形式,我们将能够根据McKean的想法提供Selberg Trace公式的证明,这是这项研究的基础。当我们将概率理论应用于上半平面的分析时,指数的Wiener功能是几何布朗尼运动的组成部分。由于同一类型的Wiener功能也出现在数学金融理论以及对随机环境中某些扩散过程的研究中也出现了一些有关这些功能的研究。在与Thie研究的外国同事的专业YOR联合项目中,我们收集了这些指数Wiener功能的一些结果和应用,并从分析的角度提供了见解。结果已发表在杂志上。较少的
项目成果
期刊论文数量(28)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Asymptotic Expansions for the Laplace Approximations of Sums of Banach Space-Valued Random Variables
Banach空间值随机变量之和的拉普拉斯近似的渐近展开式
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Sergio Albeverio;Song Liang
- 通讯作者:Song Liang
Tanaka formula for multidimensional Brownian motions
多维布朗运动的田中公式
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:M.Arisawa;Y.Giga;H.Uemura
- 通讯作者:H.Uemura
H.Osada: "Non-collision properties of Dyson's model in infinite dimension and other stochastic dynamics"Adv.Studies Pure Math.. 39(印刷中). (2004)
H.Osada:“戴森模型在无限维和其他随机动力学中的非碰撞特性”Adv.Studies Pure Math.. 39(印刷中)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Structure on solutions of ergodic type Bellman equations of first And second orders : Some observations through the singular limits
一阶和二阶遍历型贝尔曼方程解的结构:通过奇异极限的一些观察
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:H.Kaise
- 通讯作者:H.Kaise
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MATSUMOTO Hiroyuki其他文献
MATSUMOTO Hiroyuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MATSUMOTO Hiroyuki', 18)}}的其他基金
Pressure standard experiment supporting the interpretation of bottom pressure recorder in-situ observations
支持解释底部压力记录仪现场观测结果的压力标准实验
- 批准号:
16K01323 - 财政年份:2016
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Tsunami prediction considering dynamic pressure fluctuation in near source area
考虑近源区动态压力波动的海啸预测
- 批准号:
25350501 - 财政年份:2013
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stochastic analysis and its application to differential operators
随机分析及其在微分算子中的应用
- 批准号:
23540183 - 财政年份:2011
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Relationship between the globalization and the conservation of regional landscape and environment during the modern and present time in the Kii Peninsula, western Japan.
日本西部纪伊半岛现阶段全球化与区域景观和环境保护的关系。
- 批准号:
22520792 - 财政年份:2010
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating Successful Readers of English: From the Integrated Perspectives of Motivation, Beliefs, and Strategy
调查成功的英语读者:从动机、信念和策略的综合角度
- 批准号:
22520619 - 财政年份:2010
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Advances of real-time tsunami detection by ocean-bottom pressure gauges
海底压力计实时海啸探测研究进展
- 批准号:
22710175 - 财政年份:2010
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Fundamental study on the conservation of landscape and environment in and around the Nara Basin, western Japan.
日本西部奈良盆地及其周边景观和环境保护的基础研究。
- 批准号:
19520675 - 财政年份:2007
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theory of stochastic analysis and its applications
随机分析理论及其应用
- 批准号:
19204010 - 财政年份:2007
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Comprehensive use of offshore observatory for tsunami early warning system
综合利用海上观测台海啸预警系统
- 批准号:
19710152 - 财政年份:2007
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Basic Study of Revaluation of the Landscapes in Nara Basin
奈良盆地景观重估的基础研究
- 批准号:
16320113 - 财政年份:2004
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似国自然基金
点火型分数阶拉普拉斯反应扩散方程的非平面行波解
- 批准号:12301210
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
几类带对数型拉普拉斯算子的椭圆问题的研究
- 批准号:12361043
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
有重叠分形测度定义的拉普拉斯算子的谱维数和热核估计
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
有重叠分形测度定义的拉普拉斯算子的谱维数和热核估计
- 批准号:12201453
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
抛物型p-Laplacian方程解的渐近对称性及Liouville型定理
- 批准号:12201293
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
A Functional Analysis of the Hypoelliptic Laplacian
亚椭圆拉普拉斯算子的泛函分析
- 批准号:
DP230100434 - 财政年份:2023
- 资助金额:
$ 2.24万 - 项目类别:
Discovery Projects
Dynamic embedding time series models in functional brain imaging
功能性脑成像中的动态嵌入时间序列模型
- 批准号:
10711521 - 财政年份:2023
- 资助金额:
$ 2.24万 - 项目类别:
Methods for multi-ancestry and multi-trait fine-mapping and genetic risk prediction
多祖先、多性状精细定位和遗传风险预测方法
- 批准号:
10678066 - 财政年份:2023
- 资助金额:
$ 2.24万 - 项目类别:
非線形楕円型方程式の解の符号と変分的エネルギーの解析
非线性椭圆方程解的符号和变分能量分析
- 批准号:
23K03170 - 财政年份:2023
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
見本路に依存するジャンプ拡散過程の漸近挙動
取决于样本路径的跳跃扩散过程的渐近行为
- 批准号:
22KF0158 - 财政年份:2023
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for JSPS Fellows