Study of the structure of solutions to Variational Problems, Inverse Problems and Partial Differential Equations
变分问题、反问题和偏微分方程解的结构研究
基本信息
- 批准号:15540177
- 负责人:
- 金额:$ 2.18万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. Kurata studied the existence and qualitative properties of optimal solutions to several optimization problems for nonlinear elliptic boundary value problems arising in mathematical biology and nonlinear heat conduction phenomena. Kurata also proved the existence of multiple stable patterns in population growth model with Allee effect, symmetry breaking phenomena of the least energuy solution to nonlinear Schroedindger equation and asymptotic profile of radial solution with vortex to 2-dimensional nonlinear Schroedinger equation.2. Okada studied numerial simulation and numerical analysis of nonlinear paratial differential equations. Especially, he constructed boundary spline function by using Newton extrapolation polynomials.3. Sakai studied Hele-Shaw free boundary problem in the case that initial data has a cusp and found sufficient conditions to specify the typical pheneomena.4. Isozaki discovered the relationship between the hyperbolic geometry and inverse problem. He also studied the inverse conductivity problem with discontinuous inclusions and found a numerical algorithm to detect discontinuities.5. Jimbo continued his research on the study of solution structure of the Ginzburg-Landau equation arising in superconductivity under heterogeneous environments. He also studied the spectrum of elliptic operator associated with the Maxwell equation and proved characterization of eigenvalues and proved a perturbation formula by using weak forms.6. Tanaka studied concentration phenomena of solutions and clustered solutions for nonlinear elliptic singular perturbation problems. Especially, he constructed high frequency solution to nonlinear Schroedinger equations and multi-clustered high energySolutions to a phase transition prolem.
1. Kurata研究了数学生物学和非线性热传导现象中非线性椭圆边值问题的若干优化问题的最优解的存在性和定性性质。Kurata还证明了具有Allee效应的种群增长模型中存在多重稳定模式、非线性薛定谔方程最小能量解的对称性破缺现象和二维非线性薛定谔方程径向解带涡旋的渐近剖面。冈田研究了非线性偏微分方程的数值模拟和数值分析。特别是利用牛顿外推多项式构造了边界样条函数。3 . Sakai研究了初始数据有尖点情况下的Hele-Shaw自由边界问题,并找到了描述典型现象的充分条件。矶崎发现了双曲几何和逆问题之间的关系。他还研究了不连续夹杂的反电导率问题,并发现了一种检测不连续夹杂的数值算法。Jimbo继续研究了非均相环境下超导金兹堡-朗道方程的解结构。他还研究了与麦克斯韦方程相关的椭圆算子谱,证明了特征值的表征,并用弱形式证明了一个微扰公式。Tanaka研究了非线性椭圆型奇异摄动问题解的集中现象和聚类解。特别是,他构造了非线性薛定谔方程的高频解和相变问题的多簇高能解。
项目成果
期刊论文数量(158)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multiple stable patterns for some reaction-diffusion equation in disrupted environments
破坏环境中某些反应扩散方程的多种稳定模式
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:倉田和浩;田中和永 他1名
- 通讯作者:田中和永 他1名
A remark on asymptotic profiles of redial solutions with a vortex to a nonlinear Schroedinger equation(with T. Watanabe)
关于非线性薛定谔方程带涡旋重拨解的渐近廓线的评述(与 T. Watanabe 合作)
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Komeda;J.;Kazuhiro Kurata
- 通讯作者:Kazuhiro Kurata
A positive solution for a nonlinear Schroedinger equation on R^N,(with L. Jeanjean)
R^N 上非线性薛定谔方程的正解(与 L. Jeanjean 合作)
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Keisaku Kumahara;et al.;Kazunaga Tanaka
- 通讯作者:Kazunaga Tanaka
Masami Okada, S.Maeda: "Hamiltonian formulation of energy conservative variational integration by wavelet expansion"Journal of Functional Analysis. (to appear).
Masami Okada、S.Maeda:“通过小波展开的能量保守变分积分的哈密顿公式”泛函分析杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hiroshi Isozaki: "Inverse spectral problems on hyperbolic manifolds and their applications to inverse boundary value problems in Euclidian space"Amer.J.of Math.. (to appear).
Hiroshi Isozaki:“双曲流形上的逆谱问题及其在欧几里得空间中的逆边值问题中的应用”Amer.J.of Math..(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KURATA Kazuhiro其他文献
KURATA Kazuhiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KURATA Kazuhiro', 18)}}的其他基金
Study on variational problems, optimization problems and nonlinear partial differential equations
变分问题、优化问题和非线性偏微分方程研究
- 批准号:
16K05240 - 财政年份:2016
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on variational problems, optimization problems and nonlinear partial differential equations
变分问题、优化问题和非线性偏微分方程研究
- 批准号:
25400180 - 财政年份:2013
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of structures of solutions to variational problems, optimization problems and nonlinear partial differential equations
变分问题、优化问题和非线性偏微分方程解的结构研究
- 批准号:
22540203 - 财政年份:2010
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of the structure of solutions to variational problems, optimization problems, linear and nonlinear partial differential equations
研究变分问题、优化问题、线性和非线性偏微分方程的解结构
- 批准号:
18540191 - 财政年份:2006
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of Solutions to Partial Differential Equations, Variational Problems and Inverse Problems
偏微分方程、变分问题和反问题解的研究
- 批准号:
13640183 - 财政年份:2001
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of Solutions to Partial Differential Equations, Variational problems and Inverse. Problems
偏微分方程、变分问题和逆问题的解的研究。
- 批准号:
11640175 - 财政年份:1999
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of Harmonic Analysis, Solutions to Variational Problems and Partial Differential Equa
调和分析、变分问题的解法和偏微分方程的研究
- 批准号:
09640208 - 财政年份:1997
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
A variational problem on conformality of maps and a variational problem on pullbacks of metrics
映射共形性的变分问题和度量回调的变分问题
- 批准号:
18K03280 - 财政年份:2018
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on a variational problem related to conformal maps and a variational problem of pullback of metrics
共形映射相关变分问题及度量回拉变分问题研究
- 批准号:
15K04846 - 财政年份:2015
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
a variational problem with respect to conformal maps and a variational problem for pullbacks of metrics
关于共形映射的变分问题和度量回调的变分问题
- 批准号:
24540213 - 财政年份:2012
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A variational problem arising in statistics
统计中出现的变分问题
- 批准号:
397546-2010 - 财政年份:2010
- 资助金额:
$ 2.18万 - 项目类别:
University Undergraduate Student Research Awards
Variational problem and evolution equation of curves and surfaces
曲线曲面的变分问题及演化方程
- 批准号:
14204004 - 财政年份:2002
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Mathematical Analysis of partial differential equations related to a variational problem via the discrete Morse Semiflows
通过离散莫尔斯半流对与变分问题相关的偏微分方程进行数学分析
- 批准号:
11640159 - 财政年份:1999
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Analysis of free boundary problems related to a variational problem
与变分问题相关的自由边界问题的数学分析
- 批准号:
09640170 - 财政年份:1997
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)