Study of Harmonic Analysis, Solutions to Variational Problems and Partial Differential Equa
调和分析、变分问题的解法和偏微分方程的研究
基本信息
- 批准号:09640208
- 负责人:
- 金额:$ 1.41万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. Kurata studied the following :(1) unique continuation theorem and an estimate of zero set of solutions to Schrodinger operators with singular magnetic fields.(2) finiteness of the lower spectrum of uniformly elliptic operators singular potentials.(3) Liouville type theorem for Ginzburg-Landau equation and existence and its profile of the least energy solution to nonlinear Schrodinger equation with magnetic effect.(4) existence of non-topological solution to a nonlinear elliptic equation arising from Chern-Simons-Higgs theory2. Jimbo studied existence and zero set of stable non-constant solution to Ginzburg-Landau equation.3. Tanaka studied Hamilton system, uniquness and non-degeneracy of positive solution to a nonlinea elliptic equation, and the construction of multi-bump solutions.4. Murata studied uniqueness of non-negative solution to parabolic equation.5. Mochizuki studied global existence and blow-up of solutions to reaction-diffusion systems.6. Ishii studied dynamics of hypersurfaces and homogenization of Hamilton-Jacobi equation.7. Sakai studied Hale-Shaw flow in the case that initial domain has a corner.
1. Kurata研究了以下问题:(1)具有奇异磁场的Schrodinger算子的唯一延拓定理和零解集的估计。(2)一致椭圆算子奇异势下谱的有限性。(3)Ginzburg-Landau方程的Liouville型定理和具有磁效应的非线性Schrodinger方程最小能量解的存在性及其轮廓。(4)由Chern-Simons-Higgs理论导出的一类非线性椭圆型方程非拓扑解的存在性2. Jimbo研究了Ginzburg-Landau方程稳定的非常数解的存在性和零集. Tanaka研究了汉密尔顿系统,一类非线性椭圆型方程正解的唯一性和非退化性,以及多凸解的构造. Murata研究了抛物型方程非负解的唯一性. Mochizuki研究了反应扩散方程组解的整体存在性和爆破性.石井研究了超曲面的动力学和Hamilton-Jacobi方程的均匀化. Sakai研究了初始区域有角点情况下的Hale-Shaw流。
项目成果
期刊论文数量(62)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kazuhiro Kurata: "A Liouville type Theorem for the Ginzburg-Landau equations with General Potentials." in an added volume to Discrete and Continuous Dynamical Systems, Edited by W.Chen, S.Hu. 17-23 (1998)
Kazuhiro Kurata:“具有一般势的 Ginzburg-Landau 方程的 Liouville 型定理。”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Kurata: "Local boundedness and continuity for weak solutions of -(*-ib)^2u+Vu=0" Math.Z.224. 641-653 (1997)
K.Kurata:“-(*-ib)^2u Vu=0 弱解的局部有界性和连续性”Math.Z.224。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Ishii(with Arisawa, Mariko): "Some properties of ergodic attractors for controlled dynamical systems." Discrete Contin. Dynam. Systems 4. no.1. 43-54 (1998)
H.Ishii(与 Arisawa、Mariko):“受控动力系统的遍历吸引子的一些特性。”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Ishii(with K.Horie): "Homogenization of Hamilton-Jacobi equations on domains with small scale peri-odic structure," Indiana Univ.Math.J.47. 1011-1058 (1998)
H.Ishii(与 K.Horie):“具有小尺度周期性结构的域上的 Hamilton-Jacobi 方程的均匀化”,Indiana Univ.Math.J.47。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Hidano,: "Nonlinear small data scattering for the wave equation in R^<4+1>" J.Math.Soc.Japan. 50. (1998)
K.Hidano,:“R^<4 1> 中波动方程的非线性小数据散射”J.Math.Soc.Japan。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KURATA Kazuhiro其他文献
KURATA Kazuhiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KURATA Kazuhiro', 18)}}的其他基金
Study on variational problems, optimization problems and nonlinear partial differential equations
变分问题、优化问题和非线性偏微分方程研究
- 批准号:
16K05240 - 财政年份:2016
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on variational problems, optimization problems and nonlinear partial differential equations
变分问题、优化问题和非线性偏微分方程研究
- 批准号:
25400180 - 财政年份:2013
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of structures of solutions to variational problems, optimization problems and nonlinear partial differential equations
变分问题、优化问题和非线性偏微分方程解的结构研究
- 批准号:
22540203 - 财政年份:2010
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of the structure of solutions to variational problems, optimization problems, linear and nonlinear partial differential equations
研究变分问题、优化问题、线性和非线性偏微分方程的解结构
- 批准号:
18540191 - 财政年份:2006
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of the structure of solutions to Variational Problems, Inverse Problems and Partial Differential Equations
变分问题、反问题和偏微分方程解的结构研究
- 批准号:
15540177 - 财政年份:2003
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of Solutions to Partial Differential Equations, Variational Problems and Inverse Problems
偏微分方程、变分问题和反问题解的研究
- 批准号:
13640183 - 财政年份:2001
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of Solutions to Partial Differential Equations, Variational problems and Inverse. Problems
偏微分方程、变分问题和逆问题的解的研究。
- 批准号:
11640175 - 财政年份:1999
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
MANY-FACETED ATTACK ON THE COMPLEX GINZBURG-LANDAU EQUATION
对复杂 GINZBURG-LANDAU 方程的多方面攻击
- 批准号:
17540172 - 财政年份:2005
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Vortex Solutions of the Ginzburg-Landau Equation in a Thin Domain
薄域中Ginzburg-Landau方程的涡解
- 批准号:
13640142 - 财政年份:2001
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stability of Vortices and Numerical Analysis of Ginzburg-Landau Equation
涡稳定性与Ginzburg-Landau方程的数值分析
- 批准号:
11640141 - 财政年份:1999
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
THE COMPLEX GINZBURG-LANDAU EQUATION
复杂的 GINZBURG-LANDAU 方程
- 批准号:
11640185 - 财政年份:1999
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)