Optimizing black-box objective functions using computational intelligence and its application to seismic reinforcement of cable stayed bridges
利用计算智能优化黑盒目标函数及其在斜拉桥抗震加固中的应用
基本信息
- 批准号:16510130
- 负责人:
- 金额:$ 2.43万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In many practical engineering design problems, the form of objective functions is not given explicitly in terms of design variables. Given the value of design variables, under this circumstance, the value of objective functions is obtained by real/computational experiments such as structural analysis, fluidmechanic analysis, thermodynamic analysis, and so on.Usually, these experiments are considerably expensive. In order to make the number of these experiments as few as possible, optimization is performed in parallel with predicting the form of objective functions. Response Surface Methods (RSM) are well known along this approach.This research proposes several approaches to RSM such as Radial Basis Function Networks (RBFN) and Support Vector Machines (SVM). One of the most important tasks in this approach is to find effective sample data moderately in order to make the number of experiments as small as possible. In the proposed methods, additional sample data are selected in such a way that both global information for better approximation of objective function and local information for more precise approximation of optimal solution are added.In this research, in particular, a new type of support vector regression (SVR) called μ-v-SVR is proposed along the line of multi-objective optimization (MOP) and goal programming (GP).Several methods are compared along with not only test problems but also real bridge examples.
在许多实际工程设计问题中,目标函数的形式并不是以设计变量的形式明确给出的。给定设计变量的值,在这种情况下,目标函数的值是通过结构分析、流体力学分析、热力学分析等真实的/计算实验来获得的,这些实验通常是相当昂贵的。为了使这些实验的数量尽可能少,优化与预测目标函数的形式并行执行。响应面方法(RSM)是沿着被广泛使用的方法,本研究提出了几种响应面方法,如径向基函数网络(RBFN)和支持向量机(SVM)。该方法的一个重要任务是适度地寻找有效的样本数据,以使实验次数尽可能少。在所提出的方法中,额外的样本数据被选择在这样一种方式,既全局信息更好地逼近目标函数和局部信息更精确地逼近最优解。沿着多目标优化(MOP)和目标规划(GP)的思路,提出了一种新的支持向量回归机(SVR),称为μ-v-SVR通过试验问题和真实的桥梁算例对几种方法进行了沿着比较。
项目成果
期刊论文数量(87)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Computational Intelligence Method in Multi-Objective Optimization
- DOI:10.1109/sice.2006.315848
- 发表时间:2006-10
- 期刊:
- 影响因子:0
- 作者:Y. Yun;Min Yoon;H. Nakayama
- 通讯作者:Y. Yun;Min Yoon;H. Nakayama
Intelligent Start-up Schedule Optimization System for a Thermal Power Plant
火电厂智能启动调度优化系统
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Masakazu Shirakawa;Masao Arakawa;Hirotaka Nakayama
- 通讯作者:Hirotaka Nakayama
A Family of Support Vector Machines Using MOP/GP
使用 MOP/GP 的支持向量机系列
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Tanabe;H.;Amano;M.;Chiba;M.;Y.B.Yun;H.Nakayama;H.Nakayama;H.Nakayama;H.Nakayama;M.Shirakawa;H.Nakayama;Hirotaka Nakayama;Hirotaka Nakayama;Hirotaka Nakayama;Masakazu Shirakawa;Y.B.Yun;Hirotaka Nakayama;H.Nakayama;H.Nakayama;Y.Yun;K.Yoshida;Hirotaka Nakayama;Hirotaka Nakayama;Y.Yun;K.Yoshida;吉田賢史;H.Nakayama;H.Nakayama
- 通讯作者:H.Nakayama
Genetic Algorithm for Multi-objective Optimization Using GDEA
- DOI:10.1007/11539902_49
- 发表时间:2005-08
- 期刊:
- 影响因子:0
- 作者:Yeboon Yun;Min Yoon;H. Nakayama
- 通讯作者:Yeboon Yun;Min Yoon;H. Nakayama
Generating Support Vector Machines Using Multiobjective Optimization and Goal Programming
使用多目标优化和目标规划生成支持向量机
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Tanabe;H.;H.Nakayama
- 通讯作者:H.Nakayama
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NAKAYAMA Hirotaka其他文献
NAKAYAMA Hirotaka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NAKAYAMA Hirotaka', 18)}}的其他基金
Therapeutic strategy targeting epigenetics in anaplastic thyroid carcinoma
甲状腺未分化癌表观遗传学治疗策略
- 批准号:
19K09052 - 财政年份:2019
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Sequential Approximate Multiobjective Robust Optimization using ComputationalIntelligence and its Applications to Engineering Problems
使用计算智能的顺序近似多目标鲁棒优化及其在工程问题中的应用
- 批准号:
22510164 - 财政年份:2010
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multiobjective Model Predictive Control Using Computational Intelligence and its Applications to Plant Operation Problems
使用计算智能的多目标模型预测控制及其在工厂运行问题中的应用
- 批准号:
19510163 - 财政年份:2007
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
EVALUATION AND MANAGEMENT OF CREDIT RISK USING COMPUTATIONAL INTELLIGENCE AND MULTI-OBJECTIVE DECISION MAKING
利用计算智能和多目标决策评估和管理信用风险
- 批准号:
13680540 - 财政年份:2001
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An International Joint Research on Agricultural Resource Management
农业资源管理国际联合研究
- 批准号:
10898015 - 财政年份:1998
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
PORTFOLIO OPTIMIZATION USING MULTI-CRITERIA DECISION ANALYSIS AND MACHINE LEARNING
使用多标准决策分析和机器学习进行投资组合优化
- 批准号:
10680441 - 财政年份:1998
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AN APPLICATION OF A MULTI-OBJECTIVE OPTIMAL SATISFICING TECHNIQUE TO CONSTRUCTION ACCURACY CONTROL OF CABLE-STAYED BRIDGE
多目标优化满意技术在斜拉桥施工精度控制中的应用
- 批准号:
08680474 - 财政年份:1996
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
LEARNING FOR PATTERN CLASSIFICATION USING MULTI-OBJECTIVE PROGRAMMING AND ITS APPLICATON TO DIAGNOSIS SUPPORT SYSTEM OF DIABETIC ANGIOATHY
多目标规划学习模式分类及其在糖尿病血管病诊断支持系统中的应用
- 批准号:
06680414 - 财政年份:1994
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
DEVELOPMENT OF GROUP WARE BY MULTI-OBJECTIVE DECISION ANALYSIS
通过多目标决策分析开发Group Ware
- 批准号:
04832045 - 财政年份:1992
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Inferencing critical process variables through bayesian network and support vector regression
通过贝叶斯网络和支持向量回归推断关键过程变量
- 批准号:
392492-2010 - 财政年份:2012
- 资助金额:
$ 2.43万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Inferencing critical process variables through bayesian network and support vector regression
通过贝叶斯网络和支持向量回归推断关键过程变量
- 批准号:
392492-2010 - 财政年份:2011
- 资助金额:
$ 2.43万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Inferencing critical process variables through bayesian network and support vector regression
通过贝叶斯网络和支持向量回归推断关键过程变量
- 批准号:
392492-2010 - 财政年份:2010
- 资助金额:
$ 2.43万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral