PORTFOLIO OPTIMIZATION USING MULTI-CRITERIA DECISION ANALYSIS AND MACHINE LEARNING

使用多标准决策分析和机器学习进行投资组合优化

基本信息

  • 批准号:
    10680441
  • 负责人:
  • 金额:
    $ 1.79万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1998
  • 资助国家:
    日本
  • 起止时间:
    1998 至 2000
  • 项目状态:
    已结题

项目摘要

One of main features in financial investment problems is that the situation changes very often over time. In applying machine learning techniques under this circumstance, in particular, it has been observed that additional learning plays an effective role. However, since the rule for classification becomes more and more complex with only additional learning, some appropriate forgetting is also necessary. It seems natural that many data are forgotten as the time elapses. We call the way of forgetting based only on the time elapse "passive forgetting". On the other hand, it is expected more effective to forget unnecessary data actively. We call this way of forgetting "unnecessary data" actively "active forgetting". In this research, several ways for active forgetting in machine leaning have been developed and applied to stock portfolio problems. As a result, it has been shown that active forgetting provides better results than mere additional learning or passive forgetting. It can be exp … More ected that an effective decision support system for portfolio problems can be obtained by applying some of multi-objective programming techniques (e.g., Satisficing Trade-off Method developed by the author) to candidate stocks which are selected by machine learning with active forgetting.In the first year of the research term, additional learning and passive forgetting in RBF networks was developed. Through numerical experiments, it was shown that this new technology works effectively in stock portfolio problems.In the next year of the research term, rule extraction was tried by using the rough set theory. Although many machine learning techniques such as artificial neural networks can provide good results, they are not transparent (i.e., of black box). In many actual situations, people want to see how the prediction was made. To this end, extraction of explicit rules is needed. It was shown that the rough set theory can work effectively for this purpose.In the last year of the research term, active forgetting was developed. Applying active forgetting in the potential method, remarkably beneficial results were obtained in stock portfolio problems. On the basis of the obtained results, a decision support system for stock portfolio is on trial to combine the above machine learning techniques and multi-objective programming techniques. Less
金融投资问题的一个主要特征是,随着时间的推移,情况往往会发生变化。特别是,在这种情况下应用机器学习技术时,已经观察到额外的学习发挥了有效的作用。然而,由于分类规则变得越来越复杂,只有额外的学习,一些适当的遗忘也是必要的。随着时间的推移,许多数据被遗忘似乎是很自然的。我们把这种只基于时间流逝的遗忘方式称为“被动遗忘”。另一方面,主动忘记不必要的数据预计会更有效。我们把这种主动遗忘“不必要数据”的方式称为“主动遗忘”。在本研究中,我们发展了几种机器学习中主动遗忘的方法,并将其应用于股票组合问题。结果表明,主动遗忘比单纯的额外学习或被动遗忘提供了更好的结果。可以是EXP…进一步指出,将一些多目标规划技术(如作者开发的满足度权衡方法)应用于通过主动遗忘的机器学习选择的候选股票,可以获得有效的投资组合问题决策支持系统。通过数值实验,验证了该方法在股票投资组合问题中的有效性,并在下一年的研究中尝试了利用粗糙集理论进行规则提取。虽然许多机器学习技术,如人工神经网络,可以提供良好的结果,但它们不是透明的(即,黑匣子)。在许多实际情况下,人们想看看这个预测是如何做出的。为此,需要提取明确的规则。研究表明,粗糙集理论可以有效地解决这一问题。在研究的最后一年,发展了主动遗忘。将主动遗忘方法应用于势法中,在股票投资组合问题中取得了显著的有益效果。在此基础上,将上述机器学习技术与多目标规划技术相结合,试制了一个股票投资组合决策支持系统。较少

项目成果

期刊论文数量(43)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Shi and M.Zeleny (eds.): "New Frontiers of Decision Making for Information Technology Era"World Scientific. 420 (2000)
Y.Shi 和 M.Zeleny(编):“信息技术时代决策的新前沿”世界科学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Nakayama, M.Arakawa and R.Sasaki: "Optimization of Unknown Objective Functions by RBF networks and Genetic algorithms (in Japanese)"Transact. of Institute of Systems, Control and Information Engineers. 13. 152-154 (2000)
H.Nakayama、M.Arakawa 和 R.Sasaki:“通过 RBF 网络和遗传算法优化未知目标函数(日语)”Transact。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Nakayama and K.Yoshii: "Active Forgetting in Machine Learning and its Application to Financial Problems"Proc International Joint Symposium on Neural Networks. (in CD ROM). (2000)
H.Nakayama 和 K.Yoshii:“机器学习中的主动遗忘及其在金融问题中的应用”Proc 国际神经网络联合研讨会。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Nakayama,Y.B.Yun and T.Tanino: "Generalized Data Envelopment Analysis and its Application"New Frontiers of Decision Making for Information Technology Era,Y.Shi and M.Zeleny (eds.), World Scientific. 227-248 (2000)
H.Nakayama、Y.B.Yun 和 T.Tanino:“广义数据包络分析及其应用”信息技术时代决策的新前沿,Y.Shi 和 M.Zeleny(编辑),《世界科学》。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Gal,T.Hanne and T.Stewart (eds.): "Adavances in Multiple Criteria Decision Making"Kluwer Academic Publishers. 520 (1999)
T.Gal、T.Hanne 和 T.Stewart(编辑):“多标准决策的进展”Kluwer 学术出版社。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NAKAYAMA Hirotaka其他文献

NAKAYAMA Hirotaka的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NAKAYAMA Hirotaka', 18)}}的其他基金

Therapeutic strategy targeting epigenetics in anaplastic thyroid carcinoma
甲状腺未分化癌表观遗传学治疗策略
  • 批准号:
    19K09052
  • 财政年份:
    2019
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Sequential Approximate Multiobjective Robust Optimization using ComputationalIntelligence and its Applications to Engineering Problems
使用计算智能的顺序近似多目标鲁棒优化及其在工程问题中的应用
  • 批准号:
    22510164
  • 财政年份:
    2010
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multiobjective Model Predictive Control Using Computational Intelligence and its Applications to Plant Operation Problems
使用计算智能的多目标模型预测控制及其在工厂运行问题中的应用
  • 批准号:
    19510163
  • 财政年份:
    2007
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optimizing black-box objective functions using computational intelligence and its application to seismic reinforcement of cable stayed bridges
利用计算智能优化黑盒目标函数及其在斜拉桥抗震加固中的应用
  • 批准号:
    16510130
  • 财政年份:
    2004
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
EVALUATION AND MANAGEMENT OF CREDIT RISK USING COMPUTATIONAL INTELLIGENCE AND MULTI-OBJECTIVE DECISION MAKING
利用计算智能和多目标决策评估和管理信用风险
  • 批准号:
    13680540
  • 财政年份:
    2001
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An International Joint Research on Agricultural Resource Management
农业资源管理国际联合研究
  • 批准号:
    10898015
  • 财政年份:
    1998
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
AN APPLICATION OF A MULTI-OBJECTIVE OPTIMAL SATISFICING TECHNIQUE TO CONSTRUCTION ACCURACY CONTROL OF CABLE-STAYED BRIDGE
多目标优化满意技术在斜拉桥施工精度控制中的应用
  • 批准号:
    08680474
  • 财政年份:
    1996
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
LEARNING FOR PATTERN CLASSIFICATION USING MULTI-OBJECTIVE PROGRAMMING AND ITS APPLICATON TO DIAGNOSIS SUPPORT SYSTEM OF DIABETIC ANGIOATHY
多目标规划学习模式分类及其在糖尿病血管病诊断支持系统中的应用
  • 批准号:
    06680414
  • 财政年份:
    1994
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
DEVELOPMENT OF GROUP WARE BY MULTI-OBJECTIVE DECISION ANALYSIS
通过多目标决策分析开发Group Ware
  • 批准号:
    04832045
  • 财政年份:
    1992
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
  • 批准号:
    10093095
  • 财政年份:
    2024
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Collaborative R&D
Quantum Machine Learning for Financial Data Streams
金融数据流的量子机器学习
  • 批准号:
    10073285
  • 财政年份:
    2024
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Feasibility Studies
Explainable machine learning for electrification of everything
可解释的机器学习,实现万物电气化
  • 批准号:
    LP230100439
  • 财政年份:
    2024
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Linkage Projects
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Research Grant
Machine Learning for Computational Water Treatment
用于计算水处理的机器学习
  • 批准号:
    EP/X033244/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Research Grant
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
  • 批准号:
    2317681
  • 财政年份:
    2024
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
  • 批准号:
    2327473
  • 财政年份:
    2024
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Standard Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Continuing Grant
CC* Campus Compute: UTEP Cyberinfrastructure for Scientific and Machine Learning Applications
CC* 校园计算:用于科学和机器学习应用的 UTEP 网络基础设施
  • 批准号:
    2346717
  • 财政年份:
    2024
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Standard Grant
Learning to create Intelligent Solutions with Machine Learning and Computer Vision: A Pathway to AI Careers for Diverse High School Students
学习利用机器学习和计算机视觉创建智能解决方案:多元化高中生的人工智能职业之路
  • 批准号:
    2342574
  • 财政年份:
    2024
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了