LEARNING FOR PATTERN CLASSIFICATION USING MULTI-OBJECTIVE PROGRAMMING AND ITS APPLICATON TO DIAGNOSIS SUPPORT SYSTEM OF DIABETIC ANGIOATHY

多目标规划学习模式分类及其在糖尿病血管病诊断支持系统中的应用

基本信息

  • 批准号:
    06680414
  • 负责人:
  • 金额:
    $ 1.41万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1994
  • 资助国家:
    日本
  • 起止时间:
    1994 至 1995
  • 项目状态:
    已结题

项目摘要

In order to construct a diagnosis support system of diabetic angiopathy, we examined characteristic features of risk factors for macroangiopathy in 899 Japanese NIDDM with and without macroangiopathy. They were registered from 40 facilities by Multiclinical Study for Diabetic Macroangiopathy group. Three hundred eighty six subjects were identified as having macroangiopathy (MA (+) total) ; these includes 217 with ischemic heart disease (IHD), 169 with cerebrovascular disease (CVD), and 77 with peripheral vascular disease (PVD). Univariate and multivariate analyzes revealed the following factors for MA (+) total, IHD,CVD and PVD : age, fast blood sugar, hypertension, systolic blood pressure, diastolic blood pressure, duration of diabetes, diabetic microangiopathy, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), LDL-C : HDL-C ratio, brinkman index (smoking) and body mass index. In conclusion, in NIDDM patients, age, hypertension, systolic blood pressure, diastolic blood pressure and duration of diabetes were found to be risk factors for macroangiopathy.Technologies of machine learning is applied for supporting diagnosis. We developed two kinds of methods for pattern classification. One of them is a method for getting a piecewise linear discrimination function using fuzzy and/or multi-objective linear programming. The other is a committee machine which is a complex neural network consisting of several submodular neural networks. It has been observed that both methods can be effectively applied to our diagnosis problem.
为了构建糖尿病血管病变的诊断支持系统,我们对899例伴有和不伴有大血管病变的日本NIDDM患者的大血管病变危险因素特征进行了分析。他们来自40家医院,由糖尿病大血管病变多临床研究小组登记。386名受试者被确定为患有大血管病变(MA (+) total);其中包括缺血性心脏病(IHD)患者217人,脑血管疾病(CVD)患者169人,周围血管疾病(PVD)患者77人。单因素和多因素分析显示:年龄、空腹血糖、高血压、收缩压、舒张压、糖尿病病程、糖尿病微血管病变、高密度脂蛋白胆固醇(HDL-C)、低密度脂蛋白胆固醇(LDL-C)、LDL-C: HDL-C比值、brinkman指数(吸烟)和体重指数是影响MA (+) total、IHD、CVD和PVD的因素。综上所述,在NIDDM患者中,年龄、高血压、收缩压、舒张压和糖尿病病程是大血管病变的危险因素。应用机器学习技术辅助诊断。我们开发了两种模式分类方法。其中之一是利用模糊和/或多目标线性规划求分段线性判别函数的方法。另一种是委员会机,它是由多个子模块神经网络组成的复杂神经网络。结果表明,这两种方法都能有效地应用于我们的诊断问题。

项目成果

期刊论文数量(70)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Hattori: "Adjacency Matrix Representations of Elementary Subordinations" Transactions of the Institute of Systems, Control and Information Engineers. Vol.7, No.12. 531-532 (1994)
Y.Hattori:“基本从属关系的邻接矩阵表示”系统、控制和信息工程师研究所的交易。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Hattori: "Properties of Subordinate Relations Represented by Adjacency Matrices with Plural Connected Components" Transactions of the Institute of Systems, Control and Information Engineers. Vol.8, No.11. 665-666 (1995)
Y.Hattori:“由具有多个连通分量的邻接矩阵表示的从属关系的属性”系统、控制和信息工程师学会的交易。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hirotaka Nakayama: "Engineering Applications of Multi-objective Programming : Recent Results" Multiple Criteria Decision Making,ed. by G. H. Tzeng,H. F. Wang,Springer. 369-378 (1994)
Hirotaka Nakayama:“多目标规划的工程应用:最新结果”多标准决策,编辑。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hirotaka Nakayama: "Aspiration level approach to interactive multi-objective programming and its applications" Advances in Multicriteria Analysis ed. by P. M. Pardalos,Y. Siskos and C. Zopounidis.Kluwer. 147-174 (1995)
Hirotaka Nakayama:“交互式多目标编程的愿望水平方法及其应用”多标准分析进展编辑。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
服部雄一: "基本従属の隣接行列の性質" システム制御情報学会論文誌. 8. 183-184 (1995)
Yuichi Hattori:“基本依赖的邻接矩阵的性质”,系统、控制和信息工程师学会汇刊,8. 183-184 (1995)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NAKAYAMA Hirotaka其他文献

NAKAYAMA Hirotaka的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NAKAYAMA Hirotaka', 18)}}的其他基金

Therapeutic strategy targeting epigenetics in anaplastic thyroid carcinoma
甲状腺未分化癌表观遗传学治疗策略
  • 批准号:
    19K09052
  • 财政年份:
    2019
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Sequential Approximate Multiobjective Robust Optimization using ComputationalIntelligence and its Applications to Engineering Problems
使用计算智能的顺序近似多目标鲁棒优化及其在工程问题中的应用
  • 批准号:
    22510164
  • 财政年份:
    2010
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multiobjective Model Predictive Control Using Computational Intelligence and its Applications to Plant Operation Problems
使用计算智能的多目标模型预测控制及其在工厂运行问题中的应用
  • 批准号:
    19510163
  • 财政年份:
    2007
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optimizing black-box objective functions using computational intelligence and its application to seismic reinforcement of cable stayed bridges
利用计算智能优化黑盒目标函数及其在斜拉桥抗震加固中的应用
  • 批准号:
    16510130
  • 财政年份:
    2004
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
EVALUATION AND MANAGEMENT OF CREDIT RISK USING COMPUTATIONAL INTELLIGENCE AND MULTI-OBJECTIVE DECISION MAKING
利用计算智能和多目标决策评估和管理信用风险
  • 批准号:
    13680540
  • 财政年份:
    2001
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An International Joint Research on Agricultural Resource Management
农业资源管理国际联合研究
  • 批准号:
    10898015
  • 财政年份:
    1998
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
PORTFOLIO OPTIMIZATION USING MULTI-CRITERIA DECISION ANALYSIS AND MACHINE LEARNING
使用多标准决策分析和机器学习进行投资组合优化
  • 批准号:
    10680441
  • 财政年份:
    1998
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
AN APPLICATION OF A MULTI-OBJECTIVE OPTIMAL SATISFICING TECHNIQUE TO CONSTRUCTION ACCURACY CONTROL OF CABLE-STAYED BRIDGE
多目标优化满意技术在斜拉桥施工精度控制中的应用
  • 批准号:
    08680474
  • 财政年份:
    1996
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
DEVELOPMENT OF GROUP WARE BY MULTI-OBJECTIVE DECISION ANALYSIS
通过多目标决策分析开发Group Ware
  • 批准号:
    04832045
  • 财政年份:
    1992
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333881
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333882
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Standard Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Research Grant
SkyANN: Skyrmionic Artificial Neural Networks
SkyANN:Skyrmionic 人工神经网络
  • 批准号:
    10108371
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    EU-Funded
Organic optoelectronic neural networks
有机光电神经网络
  • 批准号:
    EP/Y020596/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Research Grant
Neural Networks for Stationary and Evolutionary Variational Problems
用于稳态和进化变分问题的神经网络
  • 批准号:
    2424801
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Continuing Grant
CAREER: Rethinking Spiking Neural Networks from a Dynamical System Perspective
职业:从动态系统的角度重新思考尖峰神经网络
  • 批准号:
    2337646
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Continuing Grant
RII Track-4:@NASA: Automating Character Extraction for Taxonomic Species Descriptions Using Neural Networks, Transformer, and Computer Vision Signal Processing Architectures
RII Track-4:@NASA:使用神经网络、变压器和计算机视觉信号处理架构自动提取分类物种描述的字符
  • 批准号:
    2327168
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Standard Grant
Approximation theory of structured neural networks
结构化神经网络的逼近理论
  • 批准号:
    DP240101919
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了