Exceptional Dehn surgery creating essential or Heegaard tori
出色的 Dehn 手术创造了必要的或 Heegaard 环面
基本信息
- 批准号:16540071
- 负责人:
- 金额:$ 1.34万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this research, we focused on exceptional Dehn surgery and filling for hyperbolic 3-manifolds which create essential tori or Heegaard tori. Precisely, we studied the following problems and obtained the results.(1) Manifolds realizing the maximal distance between toroidal Dehn surgeries: First, we determined all knots that admit two toroidal Dehn surgeries at distance 5. Second, we showed that the distance between toroidal Dehn fillings on a large hyperbolic 3-manifold is at most 4. Finally, we proved that if a hyperbolic manifold admits a toroidal Dehn filling and an annular Dehn filling at distance 3, then the boundary of the manifold consists of at most two tori.(2) Sequence of integral exceptional Dehn surgeries: Except Eudave-Munoz knots, it is conjectured that any exceptional Dehn surgery is integral. We studied all known examples of exceptional Dehn surgery, and found that integral exceptional Dehn surgeries form consecutive integers. By using the pentangle, we constructed hyperbolic knots which admit multiple exceptional Dehn surgeries.(3) Non-integral Dehn surgeries creating closed non-orientable surfaces : We showed that any closed non-orientable surface of genus greater than two can be created by non-integral Dehn surgery on hyperbolic knots.(4) Alexander polynomials of doubly primitive knots: We gave a formula of Alexander polynomial of doubly primitive knots. As a consequence, we showed that the Alexander polynomial of a doubly primitive knot has +1 and-1 alternatively as its coefficient.(5) A Seifert fibered manifold with infinitely many knot-surgery descriptions: We gave the first example of a small Seifert fibered manifold that can be obtained from infinitely many hyperbolic knots by the same Dehn surgery. In particular, our knots have no symmetry, so that they cannot lie on a genus two Heegaard surface of the 3-sphere.
在这项研究中,我们专注于特殊的Dehn手术和填充双曲3-流形,创造必要的环面或Heegaard环面。准确地说,我们研究了以下问题并得到了结果。(1)实现环形Dehn手术之间的最大距离的流形:首先,我们确定了在距离5处允许两个环形Dehn手术的所有结。其次,我们证明了在一个大的双曲三维流形上,环形Dehn填充之间的距离至多为4。最后,我们证明了:如果一个双曲流形在距离3处允许一个环面Dehn填充和一个环形Dehn填充,则该流形的边界至多由两个环面组成。(2)完整的特殊Dehn手术顺序:除Eudave-Munoz结外,任何特殊Dehn手术都是完整的。我们研究了所有已知的例外Dehn手术的例子,发现整数例外Dehn手术形成连续整数。通过使用五角形,我们构造了双曲结,允许多个特殊的Dehn手术。(3)非积分Dehn手术创建封闭的不可定向曲面:我们证明了亏格大于2的任何封闭的不可定向曲面都可以通过双曲结上的非积分Dehn手术创建。(4)双本原纽结的亚历山大多项式:给出了双本原纽结的亚历山大多项式的一个公式。结果表明,双本原纽结的亚历山大多项式的系数是+1和-1交替的。(5)一个具有无穷多个knot-surgery描述的塞弗特纤维流形:我们给出了一个小塞弗特纤维流形的第一个例子,它可以通过相同的Dehn手术从无穷多个双曲纽结中获得。特别是,我们的纽结没有对称性,因此它们不能位于3-球面的亏格为2的Heegaard曲面上。
项目成果
期刊论文数量(34)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Toroidal Dehn fillings on large hyperbolic 3-manifolds
大型双曲 3 流形上的环形 Dehn 填充物
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Hiroyuki Ito;Kimura Shunichi;Masakazu Teragaito
- 通讯作者:Masakazu Teragaito
Boundary structure of hyperbolic 3-manifolds admitting annular and toroidal fillings at large distance
允许大距离环形和环形填充的双曲3流形的边界结构
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:Hiroshi Goda;Masakazu Teragaito;Masakazu Teragaito
- 通讯作者:Masakazu Teragaito
Alexander polynomials of doubly primitive knots
双原结的亚历山大多项式
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Nakajima;Hiraku;Kenji Fukaya;Akira Kono;Akira Kono;Hiraku Nakajima;Hiraku Nakajima;Masakazu Teragaito
- 通讯作者:Masakazu Teragaito
On hyperbolic knots realizing the maximal distance between toroidal Dehn surgeries
双曲线结实现环形Dehn手术之间的最大距离
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Kazuhiro Ichihara;Toshio Saito;Masakazu Teragaito;Masakazu Teragaito
- 通讯作者:Masakazu Teragaito
On hyperbolic knots realizing the maximal distance between toroidal surgeries
实现环形手术间最大距离的双曲结
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Kazuhiro Ichihara;Toshio Saito;Masakazu Teragaito;Masakazu Teragaito;Masakazu Teragaito;Masakazu Teragaito;Masakazu Teragaito
- 通讯作者:Masakazu Teragaito
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TERAGAITO Masakazu其他文献
TERAGAITO Masakazu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TERAGAITO Masakazu', 18)}}的其他基金
ExceptionalDehn surgeries on hyperbolic knots
双曲线结的 ExceptionalDehn 手术
- 批准号:
22540088 - 财政年份:2010
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exceptional Dehn surgeries on hyperbolic knots and their arrangement
出色的 Dehn 双曲线结手术及其排列
- 批准号:
19540089 - 财政年份:2007
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exceptional Dehn surgery on hyperbolic 3-manifolds
双曲 3 流形的出色 Dehn 手术
- 批准号:
14540082 - 财政年份:2002
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Smooth 4-Manifold Topology, 3-Manifold Group Actions, the Heegaard Tree, and Low Volume Hyperbolic 3-Manifolds
平滑 4 流形拓扑、3 流形组动作、Heegaard 树和低容量双曲 3 流形
- 批准号:
2003892 - 财政年份:2020
- 资助金额:
$ 1.34万 - 项目类别:
Continuing Grant
Orderings in 3-manifold groups and Heegaard Floer L-spaces
3 歧管组和 Heegaard Floer L 空间中的订购
- 批准号:
20K03587 - 财政年份:2020
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference on Classical and Quantum 3-Manifold Topology
经典与量子三流形拓扑会议
- 批准号:
1841116 - 财政年份:2018
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant
Conference Proposal - Structure of 3-manifold Groups
会议提案 - 3流形组的结构
- 批准号:
1747833 - 财政年份:2018
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant
Geometric Aspects Knot and 3-manifold Invariants
几何方面结和 3 流形不变量
- 批准号:
1708249 - 财政年份:2017
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant
Orderings in 3-manifold groups
3 歧管组订购
- 批准号:
16K05149 - 财政年份:2016
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Symmetries of spatial graphs by 3-manifold topology
三流形拓扑空间图的对称性
- 批准号:
16K05163 - 财政年份:2016
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Surgery on 4-manifolds by exceptional Dehn surgery on 3-manifold
通过特殊的 Dehn 3 歧管手术进行 4 歧管手术
- 批准号:
16K05143 - 财政年份:2016
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)