Emergence of Integrability in Gauge Theory and String Theory
规范理论和弦理论中可积性的出现
基本信息
- 批准号:16540262
- 负责人:
- 金额:$ 1.47万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In 2004 academic year, Itoyama initiated research on spontaneous partial breaking of N=2 supersymmetry, in collaboration with Fujiwara (graduate student) and Sakaguchi (COE postdoctoral fellow), trying to find a new development of the research on the gluino condensate prepotential carried out in collaboration with Morozov and Kanno till 2003 academic year. Our investigation was summarized in the two published papers and one report in the conference proceedings. It had been thought that spontaneous partial breaking of rigid extended supersymmetry is hard to come by. In the first paper, we succeeded in constructing a U(N) gauge model which escapes this constraint and which is related to grand unified theories. The discrete R invariance which is necessarily accompanied with the inversion of the Fayet-Iliopoulos term and the gauging of the U(N) isometry possessed by the Kahler potential play important roles. In the second paper, we identified the degenerate vacua and derived the mass formu … More la which takes a form of the third prepotential derivatives.In 2005 academic year, we pushed the investigation of 2004 further. We succeeded in a manifestly invariant formulation of the above model in harmonic superspace and succeeded in extending a model to include matter hypermultiplets. I also supervised the master thesis of Maruyoshi on partial susy breaking of U(N) gauged N=2 supergravity and a preprint has been written. Separately, I resumed investigation of the USp matrix model proposed some time ago by myself and Tokura. With Yoshioka, we enumerated the possibilities of Z_3 orbifolding with 4 or 8 supercharges within the model (Phys.Rev D). Currently Kihara, Yoshioka and myself are finishing up a paper on the exact evaluation of USp matrix model, using the cohomology method of Moore, Nekrasov and Shatashvili. In the course of this work, we also developed a method of matrix integrations in terms of simple roots and Weyl groups of the Lie algebras, on which we are also preparing another paper. Less
2004学年,Itoyama与Fujiwara(研究生)和Sakaguchi(COE博士后研究员)合作,开始了N=2超对称性自发部分破缺的研究,试图找到与Morozov和Kanno合作进行的关于Gluino凝聚预势的研究的新进展,直到2003学年。我们的研究在两篇发表的论文和一份会议记录中进行了总结。人们一直认为,刚性扩展超对称的自发部分破缺是很难实现的。在第一篇论文中,我们成功地构造了一个U(N)规范模型,它摆脱了这个约束,并与大统一理论有关。Fayet-Iliopoulos项的反演和Kahler势所具有的U(N)等距性的度量所必然伴随的离散R不变性起着重要的作用。在第二篇文章中,我们识别了退化真空,并导出了质量公式。 ...更多信息 2005学年,我们进一步推进了2004年的研究。我们成功地在调和超空间中建立了上述模型的明显不变公式,并成功地将模型扩展到包括物质超多重态。我还指导了Maruyoshi关于U(N)规范N=2超引力的部分susy破缺的硕士论文,并编写了预印本。另外,我恢复了对我和Tokura不久前提出的USp矩阵模型的研究。与Yoshioka一起,我们在模型中列举了4个或8个超荷的Z_3轨道折叠的可能性(Phys. RevD)。目前,Kihara,Yoshioka和我正在完成一篇关于USp矩阵模型精确评估的论文,使用摩尔,Nekrasov和Shatashvili的上同调方法。在这项工作的过程中,我们还开发了一种方法的矩阵积分的单根和Weyl群的李代数,我们也准备另一篇论文。少
项目成果
期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Supersymmetric U(N) gauge model and partial breaking of N=2 supersymmetry
超对称U(N)规范模型和N=2超对称性的部分破缺
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:K.Ghoroku;A.Nakamura;M.Yahiro;Kazuhito Fujiwara
- 通讯作者:Kazuhito Fujiwara
STRING THEORY.PROCEEDINGS,17TH NISHINOMIYA-YUKAWA MEMORIAL SYMPOSIUM
弦理论.论文集,第十七届西宫汤川纪念研讨会
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:M.Fukuma;H.Itoyama;T.Nakatsu;A.Tsuchiya;(eds)
- 通讯作者:(eds)
Matrix Orientifolding and Models with Four or Eight Supercharges
矩阵定向折叠和具有四个或八个增压的模型
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:H.Itoyama;R.Yoshioka
- 通讯作者:R.Yoshioka
U(N) Gauged N=2 Supergravity and Partial Breaking of N=2 Supersymmetry
U(N) 测量的 N=2 超引力和 N=2 超对称性的部分破缺
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:H.Itoyama;K.Maruyoshi
- 通讯作者:K.Maruyoshi
PARTIAL BREAKING OF N=2 SUPERSYMMETRY AND OF GAUGE SYMMETRY IN THE U(N) GAUGE MODEL
U(N)规范模型中N=2超对称性和规范对称性的部分破缺
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:K.Fujiwara;H.Itoyama;M Sakaguchi
- 通讯作者:M Sakaguchi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ITOYAMA Hiroshi其他文献
ITOYAMA Hiroshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ITOYAMA Hiroshi', 18)}}的其他基金
Emergence of Integrability in Gauge Theory and String Theory and Nonperturbative Effects
规范理论和弦理论中可积性的出现以及非微扰效应
- 批准号:
20540278 - 财政年份:2008
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Emergence of integrability in reduced matrix model and string theory
简化矩阵模型和弦理论中可积性的出现
- 批准号:
18540285 - 财政年份:2006
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
String Theory and Matrix Models
弦理论和矩阵模型
- 批准号:
14540264 - 财政年份:2002
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
String Unification and Matrix Models
弦统一和矩阵模型
- 批准号:
12640272 - 财政年份:2000
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Matrix Model for String Unification
字符串统一的矩阵模型
- 批准号:
10640268 - 财政年份:1998
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrable Systems and Particle Physics
可积系统和粒子物理
- 批准号:
07640403 - 财政年份:1995
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exactly Solvable Quantum Field Theory and Elementary Particle Physics
精确可解的量子场论和基本粒子物理
- 批准号:
05640347 - 财政年份:1993
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Research on Defects in Supersymmetric Theories via Relation with Integrable System
通过与可积系统的关系研究超对称理论的缺陷
- 批准号:
20K03935 - 财政年份:2020
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Bosonization of quantum W superalgebra and its application to integrable system
量子W超代数的玻色化及其在可积系统中的应用
- 批准号:
19K03509 - 财政年份:2019
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Application of Abelian function theory to Integrable system
阿贝尔函数理论在可积系统中的应用
- 批准号:
16K05187 - 财政年份:2016
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
integrable system and moduli theory of derived category
可积系统与派生范畴模论
- 批准号:
26400043 - 财政年份:2014
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
M-brain and quantum integrable system
M脑和量子可积系统
- 批准号:
24540265 - 财政年份:2012
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of non-integrable system by the eigenvalue problem of the Liouvillian in classical mechanics
经典力学中刘维尔特征值问题分析不可积系统
- 批准号:
23654136 - 财政年份:2011
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Construction of ultradiscrete integrable system
超离散可积系统的构建
- 批准号:
23740091 - 财政年份:2011
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Integrable system and middle convolution
可积系统和中间卷积
- 批准号:
22740107 - 财政年份:2010
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
A construction of surfaces in spaces of constant curvature via integrable system method
常曲率空间中曲面的可积系统法构造
- 批准号:
20740045 - 财政年份:2008
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Research for new algorithms by integrable system approach
可积系统方法研究新算法
- 批准号:
20740064 - 财政年份:2008
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Young Scientists (B)