M4: Efficient and Accurate State Estimation and Feedback Control under Uncertainties

M4:不确定性下高效准确的状态估计与反馈控制

基本信息

项目摘要

This project focuses on high-quality estimation and control of the distributed processes, based on the learned models from M2 and the optimised feedforward control trajectories from M3. We assume the state to be hidden or only partially available, so we have to estimate beliefs over the distributed process state while systematically considering uncertainties in observations. Methods based on RL and MPC will be developed for improving the dynamics (stability, speed, attenuation, accuracy) of the controlled process, and will allow the process to be steered more purposively. The focus is on: (i) representation of belief states of distributed nonlinear processes with an adjustable tradeoff between complexity and representation capacity; (ii) methods for stochastic uncertainty propagation and filtering in large, distributed state spaces with differentiable ensemble flow filters, where the number of states may be several thousand; (iii) a modular sensor modelling framework that allows quick switching between sensor models without relearning for the different phases of the maturation; (iv) stochastic feedback control of nonlinear distributed processes, based on the learned distributed process models from M2, with scenario-based progressive stochastic MPC to cope with model uncertainties and noise acting upon the process; and (v) model-based policy optimisation techniques exploiting the distributed state and action spaces of the given production process. Research challenges include the high dimensionality of the distributed process models, the need for exploitation of distributed state and action representations of the process, strong nonlinearities in the state evolution models, nonlinear sensor models, and observations of disparate dimensionalities.
该项目侧重于分布式过程的高质量估计和控制,基于M2的学习模型和M3的优化前馈控制轨迹。我们假设状态是隐藏的或仅部分可用的,因此我们必须在系统地考虑观测中的不确定性的同时估计分布式过程状态的信念。基于RL和MPC的方法将被开发用于改善受控过程的动态(稳定性、速度、衰减、准确性),并且将允许更有目的地操纵该过程。重点是:(i)分布式非线性过程的置信状态的表示,在复杂性和表示能力之间具有可调节的折衷;(ii)在具有可微系综流滤波器的大型分布式状态空间中用于随机不确定性传播和滤波的方法,其中状态的数量可以是几千个;(iii)模块化传感器建模框架,其允许在传感器模型之间快速切换,而无需针对成熟的不同阶段重新学习;(iv)非线性分布过程的随机反馈控制,基于从M2学习的分布过程模型,具有基于MIMO的渐进随机MPC,以科普作用于过程的模型不确定性和噪声;以及(v)利用给定生产过程的分布式状态和动作空间的基于模型的策略优化技术。研究的挑战包括高维的分布式过程模型,需要开发分布式状态和动作表示的过程中,强非线性的状态演化模型,非线性传感器模型,和观察不同的维度。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Uwe D. Hanebeck其他文献

Professor Dr.-Ing. Uwe D. Hanebeck的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Uwe D. Hanebeck', 18)}}的其他基金

CoCPN-ng – Cooperative Cyber-Physical Networking: Next Generation
CoCPN-ng â 协作网络物理网络:下一代
  • 批准号:
    432191479
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Stochastic Optimal Control based on Gaussian Processes Regression
基于高斯过程回归的随机最优控制
  • 批准号:
    349395379
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Recursive Estimation of Rigid Body Motions
刚体运动的递归估计
  • 批准号:
    325035548
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
CoCPN: Cooperative Cyber Physical Networking
CoCPN:协作网络物理网络
  • 批准号:
    315021670
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Cooperative Approaches to Design of Nonlinear Filters
非线性滤波器设计的协作方法
  • 批准号:
    283072193
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Chance-Constrained Model Predictive Control based on Deterministic Density Approximation and Homotopy Continuation
基于确定性密度逼近和同伦延拓的机会约束模型预测控制
  • 批准号:
    267437392
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Consistent Fusion in Networked Estimation Systems
网络估计系统中的一致融合
  • 批准号:
    232171657
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Active Random Hypersurface Models: Simultaneous Shape and Pose Tracking of Extended Objects in Noisy Point Clouds
主动随机超曲面模型:噪声点云中扩展对象的同时形状和姿态跟踪
  • 批准号:
    234520279
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Stochastische modell-prädiktive Regelung von verteilt-parametrischen Systemen über digitale Netze unter Verwendung von virtuellen Mess- und Stellgrößen
使用虚拟测量和操纵变量通过数字网络对分布式参数系统进行随机模型预测控制
  • 批准号:
    173876058
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Hochdimensionale nichtlineare Zustandsschätzung auf Basis ungewisser Wahrscheinlichkeitsdichten
基于不确定概率密度的高维非线性状态估计
  • 批准号:
    58242181
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Adapting Position-Based Dynamics as a Biophysically Accurate and Efficient Modeling Framework for Dynamic Cell Shapes
采用基于位置的动力学作为动态细胞形状的生物物理准确且高效的建模框架
  • 批准号:
    24K16962
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: A Theoretical Exploration of Efficient and Accurate Clustering Algorithms
职业生涯:高效准确聚类算法的理论探索
  • 批准号:
    2337832
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Efficient and accurate scaling Graph Neural Networks for giant graphs
针对巨型图的高效、准确的缩放图神经网络
  • 批准号:
    24K20787
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
  • 批准号:
    2309547
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
A next-generation extendable simulation environment for affordable, accurate, and efficient free energy simulations
下一代可扩展模拟环境,可实现经济、准确且高效的自由能源模拟
  • 批准号:
    10638121
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
SBIR Phase I: A hybrid phasor/waveform simulation tool for the accurate and efficient simulation of large electric power systems with high shares of inverter-based resources
SBIR 第一阶段:一种混合相量/波形仿真工具,用于精确高效地仿真具有高份额逆变器资源的大型电力系统
  • 批准号:
    2321329
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
  • 批准号:
    2309548
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Improving patient safety and hospital hygiene through the efficient and accurate identification of patients with antimicrobial resistant organisms (AROs) using clinical support tools in electronic medical records
使用电子病历中的临床支持工具高效、准确地识别抗菌药物耐药微生物 (ARO) 患者,提高患者安全和医院卫生
  • 批准号:
    478042
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Towards More Efficient and Accurate Deep Learning Models for Segmentation, Classification, and Tracking
建立更高效、更准确的分割、分类和跟踪深度学习模型
  • 批准号:
    RGPIN-2022-04953
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了