Impact of intracellular organelle positioing on metabolic performance and stress tolerance of Arabidopsis plants

细胞内细胞器定位对拟南芥植物代谢性能和胁迫耐受性的影响

基本信息

项目摘要

Plant central metabolism is particularly flexible and reflects the need of plants to regularly modify their own internal physiology in response to developmental and environmental changes. While metabolic modelling has generated an understanding of the plant metabolic network, the strategies to regulate and allocate fluxes are not understood sufficiently well to account for the observable metabolic versatility of plants. At the posttranslational level, small molecule interaction, posttranslational protein modifications, and dynamic physical protein associations underpin current concepts of the regulation of metabolic fluxes. One of the oldest concepts of metabolic control, however, is compartmentation of plant metabolism into different organelles. The organelles themselves are mobile and their positioning relative to another is regulated and responsive to external conditions. Here, we aim to test the hypothesis that organelle positioning, and the generation of metabolic nano-domains structure the cellular metabolic landscape, support efficiency, and provide a novel layer of regulation. Combining the complementary expertise of three labs, we use a synthetic approach to manipulate and monitor the positioning of mitochondria and chloroplasts within Arabidopsis cells. We will alter the stability of a recently discovered glycolytic metabolon that physically links chloroplasts and mitochondria. We will further control organelle associations inducibly using the genetically encoded SpyCatcher system. To counteract interaction, we will anchor mitochondria and chloroplasts to different cellular membrane systems. To explore the significance of organelle positioning on cellular metabolism and plant performance we will employ advanced metabolite profiling, flux analyses and genetically encoded biosensors as well as phenotypic analyses, under different states of photosynthetic and photorespiratory metabolism. We will further immobilize protein biosensors on the surface of the organelles and other membranes to assess how organelle positioning and association shape metabolic gradients and nano-environments. The significance of dynamic structural organisation of plant cell organelles to adjust metabolic performance will be established.
植物中枢代谢特别灵活,反映了植物需要定期修改自身内部生理机能以应对发育和环境变化的需要。虽然代谢模型已经产生了对植物代谢网络的理解,但调节和分配通量的策略还没有被充分理解,无法解释可观察到的植物代谢多功能性。在翻译后水平,小分子相互作用、翻译后蛋白质修饰和动态物理蛋白质关联支撑了当前代谢流调节的概念。然而,代谢控制最古老的概念之一是将植物代谢划分为不同的细胞器。细胞器本身是可移动的,它们相对于另一个细胞器的定位受到调节并对外部条件做出反应。在这里,我们的目的是检验这样的假设:细胞器定位和代谢纳米域的生成构成细胞代谢景观、支持效率并提供新的调控层。结合三个实验室的互补专业知识,我们使用合成方法来操纵和监测拟南芥细胞内线粒体和叶绿体的位置。我们将改变最近发现的一种物理连接叶绿体和线粒体的糖酵解代谢物的稳定性。我们将使用基因编码的 SpyCatcher 系统进一步诱导控制细胞器关联。为了抵消相互作用,我们将线粒体和叶绿体锚定到不同的细胞膜系统。为了探索细胞器定位对细胞代谢和植物性能的重要性,我们将在不同的光合和光呼吸代谢状态下采用先进的代谢物分析、通量分析和基因编码生物传感器以及表型分析。我们将进一步将蛋白质生物传感器固定在细胞器和其他膜的表面,以评估细胞器的定位和关联如何塑造代谢梯度和纳米环境。将确立植物细胞器动态结构组织对调节代谢性能的重要性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Alisdair Fernie, Ph.D.其他文献

Professor Dr. Alisdair Fernie, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Alisdair Fernie, Ph.D.', 18)}}的其他基金

Evolution in a changing environment: the genetic architecture of adaptation outside centers of domestication of Phaseolus vulgaris and P. coccineus
不断变化的环境中的进化:菜豆和红豆驯化中心外的适应遗传结构
  • 批准号:
    263436372
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Genomics of trait canalization in tomato
番茄性状管道化的基因组学
  • 批准号:
    208417411
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    DIP Programme
Dynamic analysis of metabolism under circumstances of altered photorespiratory flux
光呼吸通量改变情况下的代谢动态分析
  • 批准号:
    134777926
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Units
Integrating genetics and high throughput genomics to indentify genes underlying tomato quantitative trait loci (QTL) for metabolites that influence fruit quality (TomQML)
整合遗传学和高通量基因组学来鉴定影响果实品质的代谢物的番茄数量性状位点 (QTL) 的基因 (TomQML)
  • 批准号:
    105799092
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Thrips Resistance In TomatO Plants (ERA-PG 042)
番茄植株的蓟马抗性 (ERA-PG 042)
  • 批准号:
    35920719
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
DFG Trilateral collaboration Deutschland-Israel-Palestine: Drought Tolerant Sun-Dried Tomatoes: A Novel Product Based on Heterotic Natural Biodiversity
DFG 三边合作德国-以色列-巴勒斯坦:耐旱晒干番茄:一种基于杂种天然生物多样性的新产品
  • 批准号:
    34466069
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Regulation of the plant metabolic network during stress (ERA-PG 003)
胁迫期间植物代谢网络的调节 (ERA-PG 003)
  • 批准号:
    35817926
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Examining the mechanisms underlying the abiotic stress tolerance of the wild tomato species Solanum pennellii
研究野生番茄品种 Solanum pennellii 的非生物胁迫耐受性机制
  • 批准号:
    452682775
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Discovery and identification of favourable haplotypes for metabolic traits in tea germplasm
茶树种质代谢性状有利单倍型的发现和鉴定
  • 批准号:
    468870408
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

TAG1/APP信号通路调控的miRNA及其在神经前体细胞增殖和分化中的作用机制
  • 批准号:
    31171313
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
吸入性全身麻醉药致发育神经元毒性的受体-细胞内钙稳态阶段特异性机制及干预研究
  • 批准号:
    30772086
  • 批准年份:
    2007
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Intracellular transport and organelle biology at the nanoscale: A multidimensional super-resolution approach
纳米尺度的细胞内运输和细胞器生物学:多维超分辨率方法
  • 批准号:
    10623590
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
MECHANISMS OF ORGANELLE BIOGENESIS AT THE ENDOPLASMIC RETICULUM SUBDOMAINS
内质网亚域细胞器生物发生机制
  • 批准号:
    10797317
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Development of sensitive intracellular molecular analytical method by single-cell organelle injection and derivatization
通过单细胞细胞器注射和衍生化开发灵敏的细胞内分子分析方法
  • 批准号:
    22K06551
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mechanisms and functions of host organelle usurpation by intravacuolar Toxoplasma
液泡内弓形虫侵占宿主细胞器的机制和功能
  • 批准号:
    10649407
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
MECHANISMS OF ORGANELLE BIOGENESIS AT THE ENDOPLASMIC RETICULUM SUBDOMAINS
内质网亚域细胞器生物发生机制
  • 批准号:
    10684111
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
MECHANISMS OF ORGANELLE BIOGENESIS AT THE ENDOPLASMIC RETICULUM SUBDOMAINS
内质网亚域细胞器生物发生机制
  • 批准号:
    10501463
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Development of intracellular force sensors and actuators for organelle research
开发用于细胞器研究的细胞内力传感器和执行器
  • 批准号:
    22K18362
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Mechanisms and functions of host organelle usurpation by intravacuolar Toxoplasma
液泡内弓形虫侵占宿主细胞器的机制和功能
  • 批准号:
    10363370
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Intracellular organelle deficits driving Alzheimer's disease
细胞内细胞器缺陷导致阿尔茨海默病
  • 批准号:
    10058739
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Dynamic organelle membrane contacts as key regulators of virus replication
动态细胞器膜接触作为病毒复制的关键调节因子
  • 批准号:
    10011555
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了