Molecular and cellular basis of Lessel-Kreienkamp syndrome, caused by pathogenic variants in AGO2

由 AGO2 致病性变异引起的 Lessel-Kreienkamp 综合征的分子和细胞基础

基本信息

项目摘要

RNA interference is the major mechanism for post-transcriptional regulation of gene expression in eukaryotic cells. Precursors of microRNAs (miRNAs) are transcribed, processed into mature miRNAs and loaded onto Argonaute (AGO1-4) proteins to form the RNA-induced silencing complex (RISC). Each miRNA recognizes target mRNAs by base pairing, leading to translational silencing and mRNA degradation in cytoplasmic processing (P-) bodies. We have recently linked pathogenic variants in AGO2 to a neurodevelopmental disorder characterized by intellectual disability, delayed motor development, impaired speech and receptive language development. This disorder has now been named Lessel-Kreienkamp syndrome (LESKRES). Missense variants in AGO2 reduce the capacity of the encoded protein to perform shRNA based silencing in in vitro assays. Intriguingly, comparable variants in similarly affected individuals were later also identified in AGO1. The impact of the variants at the molecular, cellular and clinical level remains unclear. So far, there are no cellular or animal models for this disorder. Thus, we do not know (i) how genotype correlates with phenotype; (ii) which function(s) of AGO2 are affected; (iii) whether the complement of neuronal miRNAs is altered; and (iv) which targets of the AGO2/miRNA complex are dysregulated in neuronal systems. Here we will address these questions by using several complementary approaches. By combining clinical details with in-vitro analyses, we will investigate variant-specific effects on the clinical outcome of LESKRES disorder. We will analyse the impact of missense variants on non-canonical AGO2 functions, such as the regulation of alternative splicing and the DNA damage response pathway. Moreover, we will determine how pathogenic amino acid exchanges in AGO2 as well as AGO1 alter the set of RISC-associated miRNAs in murine neurons, and in iNeurons differentiated from induced pluripotent stem (iPS) cells of individuals harbouring missense variants in AGO2. Besides a detailed analysis of the effects of AGO2 variants on gene expression, we will evaluate cultured neurons for changes in morphology, synapse formation, and alterations in signalling pathways. In a further approach, we have generated two mouse lines carrying missense variants, identified in LESKRES-individuals, and one loss-of-function line. In brains of these mice, we will determine the effect of Ago2 variants on the complement of miRNAs and their mRNA targets. We will assess how these changes affect the cellular and the synaptic proteome, as well as synaptic function and plasticity. Finally, we will analyse the behaviour of mice with respect to changes in learning and memory paradigms. We expect to obtain a clearer view on alterations in gene expression occurring due to variants in AGO2 found in affected individuals. In addition, we expect to create models of the human disease that will provide avenues for the exploration of therapeutic approaches.
RNA干扰是真核细胞中基因表达转录后调控的主要机制。 microRNA (miRNA) 的前体被转录、加工成成熟的 miRNA 并加载到 Argonaute (AGO1-4) 蛋白上,形成 RNA 诱导的沉默复合物 (RISC)。每个 miRNA 通过碱基配对识别目标 mRNA,导致细胞质加工 (P-) 体中的翻译沉默和 mRNA 降解。我们最近将 AGO2 的致病变异与一种神经发育障碍联系起来,其特征是智力障碍、运动发育迟缓、言语和接受性语言发育受损。这种疾病现在被命名为 Lessel-Kreienkamp 综合征 (LESKRES)。 AGO2 中的错义变异降低了编码蛋白在体外测定中执行基于 shRNA 的沉默的能力。有趣的是,后来在 AGO1 中也发现了类似受影响个体的类似变异。这些变异在分子、细胞和临床水平上的影响仍不清楚。到目前为止,还没有这种疾病的细胞或动物模型。因此,我们不知道(i)基因型与表型如何相关; (ii) AGO2 的哪些功能受到影响; (iii) 神经元 miRNA 的补体是否发生改变; (iv) AGO2/miRNA 复合物的哪些靶标在神经系统中失调。在这里,我们将通过使用几种互补的方法来解决这些问题。通过将临床细节与体外分析相结合,我们将研究变异特异性对 Leskres 疾病临床结果的影响。我们将分析错义变异对非规范 AGO2 功能的影响,例如选择性剪接的调节和 DNA 损伤反应途径。此外,我们将确定 AGO2 和 AGO1 中的致病性氨基酸交换如何改变小鼠神经元中的 RISC 相关 miRNA 集,以及从含有 AGO2 错义变异的个体的诱导多能干 (iPS) 细胞分化而来的 iNeurons 中。除了详细分析 AGO2 变体对基因表达的影响外,我们还将评估培养的神经元的形态变化、突触形成和信号通路的改变。在进一步的方法中,我们生成了两个携带错义变体的小鼠品系(在 LESKRES-个体中鉴定)和一个功能丧失品系。在这些小鼠的大脑中,我们将确定 Ago2 变体对 miRNA 及其 mRNA 靶标的补充的影响。我们将评估这些变化如何影响细胞和突触蛋白质组,以及突触功能和可塑性。最后,我们将分析小鼠在学习和记忆范式变化方面的行为。我们希望能够更清楚地了解受影响个体中发现的 AGO2 变异导致的基因表达变化。此外,我们期望创建人类疾病模型,为探索治疗方法提供途径。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Hans-Jürgen Kreienkamp其他文献

Professor Dr. Hans-Jürgen Kreienkamp的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Hans-Jürgen Kreienkamp', 18)}}的其他基金

Postsynaptic Shank proteins as effectors of Ras family G-proteins
突触后柄蛋白作为 Ras 家族 G 蛋白的效应子
  • 批准号:
    407143299
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Genetic and molecular network of the calcium/calmodulin-dependent serine protein kinase CASK
钙/钙调蛋白依赖性丝氨酸蛋白激酶 CASK 的遗传和分子网络
  • 批准号:
    280629181
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Ubiquitylation and degradation of postsynaptic scaffold proteins
突触后支架蛋白的泛素化和降解
  • 批准号:
    45502901
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Units
The role of the postsynaptic protein IRSp53 in synaptic plasticity
突触后蛋白IRSp53在突触可塑性中的作用
  • 批准号:
    28035010
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Grants
The RNA helicase DHX30: Physiological function and role in a neurodevelopmental disorder
RNA 解旋酶 DHX30:神经发育障碍中的生理功能和作用
  • 批准号:
    463129991
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

基于MFSD2A调控血迷路屏障跨细胞囊泡转运机制的噪声性听力损失防治研究
  • 批准号:
    82371144
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
rhTβ4增强间充质干细胞调节T细胞代谢重塑治疗干眼的机制研究
  • 批准号:
    32000530
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
胰岛素和细菌信号协同调节巨噬细胞免疫反应的作用
  • 批准号:
    92057105
  • 批准年份:
    2020
  • 资助金额:
    89.0 万元
  • 项目类别:
    重大研究计划
聚谷氨酰胺(PolyQ)疾病致病蛋白构象多态性的研究及应用
  • 批准号:
    31970748
  • 批准年份:
    2019
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
MAPK11通过RNA结合蛋白ELAVL1调控HTT水平的机制与病理意义研究
  • 批准号:
    31970747
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
细胞代谢重组过程中蛋白质组热稳定性分析
  • 批准号:
    31970706
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
Atg4B可逆氧化修饰的作用机制及其对自噬的调节研究
  • 批准号:
    31970699
  • 批准年份:
    2019
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
用识别EBV相关淋巴瘤抗原多肽的T细胞受体做转基因免疫治疗
  • 批准号:
    81041002
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
半群代数和半群表示
  • 批准号:
    10961014
  • 批准年份:
    2009
  • 资助金额:
    18.0 万元
  • 项目类别:
    地区科学基金项目
Cellular & Molecular Immunology
  • 批准号:
    30824806
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Deciphering the molecular & cellular basis of Low-Grade Glioma
破译分子
  • 批准号:
    478958
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Molecular basis of mitochondrial dynamics and their contribution to cellular stress responses
线粒体动力学的分子基础及其对细胞应激反应的贡献
  • 批准号:
    23H02096
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Investigating the molecular and cellular basis of impaired vaccine responses in parasitic worm infection
研究寄生虫感染中疫苗反应受损的分子和细胞基础
  • 批准号:
    2889711
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Molecular basis of activation of the orphan nuclear receptor Nurr1
孤儿核受体 Nurr1 激活的分子基础
  • 批准号:
    10831795
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
The Molecular and Cellular Basis of the Sleep Homeostat
睡眠稳态的分子和细胞基础
  • 批准号:
    10896547
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Understanding the Molecular Basis of Translation Inhibition by SARS-CoV-2 NSP14 and its Role in SARS-CoV-2 Immune Evasion
了解 SARS-CoV-2 NSP14 翻译抑制的分子基础及其在 SARS-CoV-2 免疫逃避中的作用
  • 批准号:
    10427688
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
REU Site: Molecular Basis of Cellular Phenotypes (MBCP) at The Wistar Institute
REU 网站:Wistar 研究所的细胞表型分子基础 (MBCP)
  • 批准号:
    2150060
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Molecular Basis of nuclear envelope stress and its cellular response
核膜应激的分子基础及其细胞反应
  • 批准号:
    23K17413
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
The molecular basis of dopaminergic transmission: Identifying and Characterizing Cellular Adhesion Sites
多巴胺能传递的分子基础:识别和表征细胞粘附位点
  • 批准号:
    22KF0335
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Molecular and cellular basis of mosquito olfactory attraction to hay infusion for enhanced vector surveillance and control
蚊子对干草浸液的嗅觉吸引力的分子和细胞基础,以加强病媒监测和控制
  • 批准号:
    10648584
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了