曲げエネルギーを極小にする閉曲面と赤血球膜の形態変換

红细胞膜的闭合曲面和形态转变以最小化弯曲能量

基本信息

  • 批准号:
    09874026
  • 负责人:
  • 金额:
    $ 1.22万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Exploratory Research
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1998
  • 项目状态:
    已结题

项目摘要

本研究は赤血球の形態のモデルとして知られているある特別な性質をもった閉曲面を数学的に厳密に構成することを目的に行なわれた.この曲面は,与えられた表面積をもち,それが囲む領域が指定された体積をもつような閉曲面の中で平均曲率の平方積分を極小にするようなものである.物理的には平均曲率の平方積分は弾性膜のもつ曲げエネルギーを表している.実際には,膜の裏表の構造の違いを考慮に入れた自発的曲率の効果を含むエネルギー汎函数を極小にする曲面を考察した.前年度の研究では分岐理論を適用して球面に近い回転面の範囲でエネルギー汎函数の臨界点となる曲面をすべて構成した.今年度はその安定性についての考察を中心に研究を展開した.このため,エネルギー汎函数の第二変分を長い計算の末に求めた.その結果,自発的曲率がある値よりも(1)大きいとき,縦長の曲面が安定で横長の曲面が不安定となり,(2)小さいとき,逆に縦長の曲面が不安定で横長の曲面が安定となることが判明した.安定性の考察のためには,制約条件を充たしつつ曲面を変形していく必要があり,従って,問題となる曲面がどの程度そのような変形を許容するかを明らかにすることによって厳密な安定性の判定が可能になった.以上の研究成果は間もなく論文として公表する予定であるが,本研究の成果報告と関連分野の研究者間の情報交換とを兼ねて,研究集会「曲率と形態変換」を開催した.厳密な数学として研究を推進するにはまだ枠組みや理論が未整備な研究対象を取り上げて,数値的方法なども含めて基礎的なデータを蓄積していくことを目標に始められたものであるが,結果的には,数学的に厳密な部分の研究が予想外に大きく進展した.球面から大きく離れた曲面については今後の魅力的な研究課題として残されている.
In this study, the morphology of red blood cells (RBC), the shape of red blood cells, the morphology of red blood cells, the mathematics of The mean curvature of the surface is divided into two parts: the mean curvature square of the surface, the mean curvature of the surface, the field, the surface, the surface. The physical mean curvature is divided into two parts: the average curvature, the square of the mean curvature, the square of the physical mean curvature, the square of the mean curvature, the surface of the film. In terms of the curvature of the film, the curvature of the film contains the function of the surface. In the previous year, in the study of bifurcation theory, we used the spherical surface near the surface range, the function, the boundary point, the surface, the surface. This year, we will conduct a study on the stability of the center. The second part of the long-term calculation is the end of the calculation. The results show that the curvature of the self-defined surface is (1) large, the long surface is stable, the horizontal surface is unstable, and (2) the inverse curvature is not stable, and the inverse curvature is unstable. The stability test is based on the condition that the shape of the surface is not necessary, and the problem is that the shape of the surface is not as good as that of the surface. The above research results are compared and published in the public table. The results of this study report on the exchange of love and love among researchers, and the research conference "curvature profile" is held to urge the discussion. The study of mathematics and physics promotes the study of the theory of mathematical mathematics. The method of mathematical analysis is to improve the performance of the target of computer science, the results of which, the secret part of mathematics and the study of mathematics. The spherical surface is far away from the surface, and the research problem of charm in the future is very important.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

高木 泉其他文献

枯草菌の細胞タイプ制御の数理モデルとヒステリシスの条件
枯草芽孢杆菌细胞类型控制和滞后条件的数学模型
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    田﨑 創平;中山 まどか;高木 泉;東海林 亙
  • 通讯作者:
    東海林 亙

高木 泉的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('高木 泉', 18)}}的其他基金

Behavior of nonstationary solutions to reaction-diffusion systems possessing continua of stationary solutions
具有连续稳定解的反应扩散系统的非平稳解的行为
  • 批准号:
    23K03176
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fundamental theory of reaction-diffusion equations with variable coefficients---a panorama in Turing's sight
变系数反应扩散方程的基础理论——图灵眼中的全景
  • 批准号:
    19K03557
  • 财政年份:
    2019
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
赤血球膜の静的及び動的変形のモデル化とその解析
红细胞膜静态和动态变形的建模与分析
  • 批准号:
    11874033
  • 财政年份:
    1999
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
変分法とその反応拡散方程式系への応用
变分法及其在反应扩散方程组中的应用
  • 批准号:
    08640154
  • 财政年份:
    1996
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
非線型楕円型境界値問題の解の大域的性質
非线性椭圆边值问题解的全局性质
  • 批准号:
    07640157
  • 财政年份:
    1995
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
楕円型境界値問題と領域の幾何
椭圆边值问题和域几何
  • 批准号:
    06640195
  • 财政年份:
    1994
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
微分方程式の摂動問題
微分方程摄动问题
  • 批准号:
    04640115
  • 财政年份:
    1992
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
微分方程式と摂動問題
微分方程和摄动问题
  • 批准号:
    03640118
  • 财政年份:
    1991
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似国自然基金

空间形式中平均曲率流与几类曲率幂次流收敛性的若干研究
  • 批准号:
    QN25A010037
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
平均曲率流及相关子流形的若干问题研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
实空间形式中子流形共形平均曲率流的爆破 及相关问题研究
  • 批准号:
    Q24A010043
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
无界区域上Minkowsky空间中给定平均曲率方程解的正则性、衰减率及对称破缺研究
  • 批准号:
    12461036
  • 批准年份:
    2024
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目
具正平均曲率的厄密特度量的存在性及相关问题的研究
  • 批准号:
    12371062
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
Minkowski空间中给定平均曲率问题正解的全局分歧研究
  • 批准号:
    CSTB2023NSCQ-BHX0226
  • 批准年份:
    2023
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
平均曲率流与子流形几何的若干研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
斜平均曲率流与薛定谔流
  • 批准号:
    LY22A010005
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
平均曲率流的奇点性质研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
关于平均曲率流若干奇点问题的研究
  • 批准号:
    12026251
  • 批准年份:
    2020
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Canonical mean curvature flow and its application to evolution problems
正则平均曲率流及其在演化问题中的应用
  • 批准号:
    23H00085
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
調和関数論を用いた平均曲率零曲面および関連する曲面論の研究
利用调和函数理论研究零平均曲率曲面及相关曲面理论
  • 批准号:
    23K12979
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Toward applications of the crystalline mean curvature flow
晶体平均曲率流的应用
  • 批准号:
    23K03212
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometric analysis of mean curvature flow with dynamic contact angle structure
动态接触角结构平均曲率流动的几何分析
  • 批准号:
    23K12992
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Construction of constant mean curvature surfaces via loop groups and Lorentz geometry
通过环群和洛伦兹几何构造恒定平均曲率曲面
  • 批准号:
    23K03081
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Singularities of Minimal Hypersurfaces and Lagrangian Mean Curvature Flow
最小超曲面的奇异性和拉格朗日平均曲率流
  • 批准号:
    2306233
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Continuing Grant
離散的な平均曲率一定曲面の正則写像による表現公式
具有恒定平均曲率的离散曲面的全纯映射表达式公式
  • 批准号:
    23KF0051
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Mean curvature flow of small sections of the tangent bundle
切束小截面的平均曲率流
  • 批准号:
    572922-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.22万
  • 项目类别:
    University Undergraduate Student Research Awards
The Morse index, topology and geometry of branched constant mean curvature surfaces.
分支常平均曲率表面的莫尔斯指数、拓扑和几何。
  • 批准号:
    2758306
  • 财政年份:
    2022
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Studentship
Research of submanifolds by using the mean curvature flow and Lie group actions, and its application to theoretical physics
利用平均曲率流和李群作用研究子流形及其在理论物理中的应用
  • 批准号:
    22K03300
  • 财政年份:
    2022
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了