変分法とその反応拡散方程式系への応用

变分法及其在反应扩散方程组中的应用

基本信息

  • 批准号:
    08640154
  • 负责人:
  • 金额:
    $ 1.22万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1996
  • 资助国家:
    日本
  • 起止时间:
    1996 至 无数据
  • 项目状态:
    已结题

项目摘要

本研究では主として単独の半線型楕円型偏微分方程式に対する境界値問題を変分法の観点から考察し,それを反応拡散方程式系の定常解の構成及びその安定性の判定に応用した.まず,双安定な非線形項をもつ半線型楕円型方程式に対するディリクレ問題の解で境界層を持たないものを求めた.このような解はエネルギー汎函数の鞍点となるため,峠の題を用いて解の存在を示した.反応拡散系への応用と云う観点からは解の構造についての詳しい情報を導いておく必要がある.特に拡散係数が十分小さい場合に,解の漸近挙動に関して次のような結果を得た.峠の補題によって与えられる解はただ一点で極大になり,(従って,それは最大値である)この最大値を実現する点は,拡散係数が0に近づくとき,境界からの距離が最大になる点に近づく,また,このことを証明する際の副産物として解の漸近形が得られた.一方,単安定な非線型項をもつ半線型楕円型方程式に対するノイマン問題の解は活性因子-抑制因子型の反応拡散系の点凝集定常解を構成する際に本質的な役割を果たす.空間次元1の場合に単独方程式の解の不安定次元を計算し,そのことの帰結として,抑制因子の拡散が十分早い場合,区間内部に凝集するような定常解は不安定であることを明らかにした.(以上は、ウェイミンニィ、柳田英二及びジュンチェンウェイ氏の研究協力により明らかになった。)研究分担者は様々な変分問題と安定性の判定のために必要な線型化作用素を研究した.増田久弥は微分幾何学に現れる変分問題を取り上げ劔持勝衛と共同して複素2次元射影空間の定ガウス曲率の最小曲面を完全に分類した.また,佐藤得志は非線型楕円型方程式の特異性をもった解の集合の大域的構造を研究した.
In this paper, we investigate the construction of steady state solutions and the determination of stability of a system of nonlinear partial differential equations. The solution of the bistatic non-linear equation for the semi-linear equation is to solve the boundary layer problem. The existence of a solution to a problem is demonstrated by the existence of a solution to the problem. The structure of the anti-dispersion system is complex, and the information is necessary. Especially when the dispersion coefficient is very small, the asymptotic motion of the solution is related to the second order and the result is obtained. The maximum value of the solution is found at the point where the dispersion coefficient is 0, the distance between the boundary and the maximum point is 0, and the asymptotic form of the solution is obtained. A solution to the active factor-suppressor type inverse dispersion system of point aggregation steady state solution is constructed by a stationary nonlinear term and a semi-linear equation. In the case of space dimension 1, the solution of the equation is unstable. In the case of space dimension 1, the solution is unstable. In the case of space dimension 1, the solution is unstable. (The above research cooperation between YAGDA and YAGDA is very important.) The study of linear action factors is necessary for the determination of stability. A complete classification of the minimum curvature of a complex two-dimensional projective space. A study on the structure of the set of non-linear equations and their specificity.

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K.Saito: "On σ-normal C^*-algebras" Bull. London Math. Soc.(発表予定). (1997)
K. Saito:“关于 σ-正规 C^*-代数”,伦敦数学会(1997 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Nagasawa: "Bifurcation analysis of a constraint minimizartion problem for the modififed Willmore functional" Proceedings of the Conference on Nonlinear Differential Equations held at Chung-Cheng University, Taiwan. (出版予定). (1997)
T. Nagasawa:“修正 Willmore 泛函的约束最小化问题的分叉分析”,台湾中正大学非线性微分方程会议论文集(即将出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

高木 泉其他文献

枯草菌の細胞タイプ制御の数理モデルとヒステリシスの条件
枯草芽孢杆菌细胞类型控制和滞后条件的数学模型
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    田﨑 創平;中山 まどか;高木 泉;東海林 亙
  • 通讯作者:
    東海林 亙

高木 泉的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('高木 泉', 18)}}的其他基金

Behavior of nonstationary solutions to reaction-diffusion systems possessing continua of stationary solutions
具有连续稳定解的反应扩散系统的非平稳解的行为
  • 批准号:
    23K03176
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fundamental theory of reaction-diffusion equations with variable coefficients---a panorama in Turing's sight
变系数反应扩散方程的基础理论——图灵眼中的全景
  • 批准号:
    19K03557
  • 财政年份:
    2019
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
赤血球膜の静的及び動的変形のモデル化とその解析
红细胞膜静态和动态变形的建模与分析
  • 批准号:
    11874033
  • 财政年份:
    1999
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
曲げエネルギーを極小にする閉曲面と赤血球膜の形態変換
红细胞膜的闭合曲面和形态转变以最小化弯曲能量
  • 批准号:
    09874026
  • 财政年份:
    1997
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
非線型楕円型境界値問題の解の大域的性質
非线性椭圆边值问题解的全局性质
  • 批准号:
    07640157
  • 财政年份:
    1995
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
楕円型境界値問題と領域の幾何
椭圆边值问题和域几何
  • 批准号:
    06640195
  • 财政年份:
    1994
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
微分方程式の摂動問題
微分方程摄动问题
  • 批准号:
    04640115
  • 财政年份:
    1992
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
微分方程式と摂動問題
微分方程和摄动问题
  • 批准号:
    03640118
  • 财政年份:
    1991
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

変分法と位相幾何学によるハミルトン系の新たな理論の構築と展開
使用变分方法和拓扑构建和发展哈密顿系统新理论
  • 批准号:
    23K25778
  • 财政年份:
    2024
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
変分法と位相幾何学によるハミルトン系の新たな理論の構築と展開
使用变分方法和拓扑构建和发展哈密顿系统新理论
  • 批准号:
    23H01081
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
高頻度高密度観測データ活用のための多重スケールを考慮した変分法データ同化の確立
建立考虑多尺度的变分法资料同化,利用高频、高密度观测资料
  • 批准号:
    21K03667
  • 财政年份:
    2021
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
変分法によるN体問題の周期解の存在証明と安定性解析
使用变分方法证明 N 体问题周期解的存在性和稳定性分析
  • 批准号:
    20J21214
  • 财政年份:
    2020
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
現実的核力に基づく変分法による核物質状態方程式の作成と原始中性子星への応用
基于真实核力的变分法建立核物质状态方程及其在原初中子星中的应用
  • 批准号:
    20K03979
  • 财政年份:
    2020
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quotスキームを用いた小林-ヒッチン対応及びヒッグズ束への変分法的アプローチ
使用 Quot 方案实现小林希钦对应和希格斯丛的变分法
  • 批准号:
    19K14524
  • 财政年份:
    2019
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
変分法による周期軌道の個数評価と分岐解析および複雑な軌道の存在証明
使用变分法评估周期轨道的数量、分岔分析以及复轨道存在性的证明
  • 批准号:
    18K03366
  • 财政年份:
    2018
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The establish of differential method between focal AIP and pancreas cancer based on the radiopathologic comparison.
基于放射病理学比较的局灶性AIP与胰腺癌鉴别方法的建立
  • 批准号:
    16K19811
  • 财政年份:
    2016
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
クラスター変分法によるB2規則相中の転位芯構造の解析
簇变分法分析B2有序相位错核心结构
  • 批准号:
    13J02373
  • 财政年份:
    2013
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
変分法的アプローチによる非線形楕円型方程式と拡散方程式の研究
使用变分法研究非线性椭圆方程和扩散方程
  • 批准号:
    12J02259
  • 财政年份:
    2012
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了