Reduktion von Meßdaten aus optischen und taktilen Gestaltmessungen zur funktionsorientierten Auswertung von Standardformelementen

减少光学和触觉形状测量的测量数据,用于标准形状元素的功能导向评估

基本信息

项目摘要

Flächenhaft messende optische Systeme zeichnen sich durch hohe Meßpunktdichten aus. Meßpunktzahlen von über einer Million Punkten gehören bei den eingesetzten Meßsystemen zum Stand der Technik. Auch in der optischen- und taktilen Koordinaten- und formmeßtechnik ist die Anzahl der auszuwertenden Meßpunkte als Folge der Entwicklungen in der Gerätetechnik in den letzten Jahren deutlich angestiegen. Die Messung im Scanning-Modus im Zusammenhang mit erhöhten Verfahrgeschwindigkeiten ermöglicht die Aufnahme von zahlreichen Profilschnitten mit einer Dichte von mehreren Tausend Meßpunkten pro Schnitt. Die iterativ arbeitenden funktionorientierten Auswerteverfahren nach der Hüll, Pferch-, Tangential- oder Minimumbedingung benötigen jedoch Rechenzeiten, die überproprotional mit der Meßpunktanzahl steigen. Selbst bei Verwendung fortschrittlichster Rechentechnik sind die resultierenden Antwortzeiten aus Anwendersicht nicht hinnehmbar. Da bei der Berechnung der anliegenden Ersatzelemente nur wenige Meßpunkte in den nicht funktionsbestimmenden Bereichen eine deutliche Verkürzung der Rechenzeit erreicht werden. Ziel des Forschungsvorhabens ist es, Verfahren der optischen und taktilen Gestaltmeßtechnik für Standardformelemente so zu qualifizieren und zu kombinieren, daß eine schnellstmögliche Auswertung mit problemangepaßter Genauigkeit erreicht wird.
Flächenhaft信息光学系统zeichnen sich durch hohe Meßpunktelten aus. Meßpunktzahlen von über einer Million Punkten gehören bei den eingesetzten Meßsystemen zum Stand der Technik.在光学和热协调和成形技术方面,也是近几年来德国在几何技术领域发展的一个重要方面。在Zusammenhang中的扫描模式中的测量,具有高度的Verfahrgeschwindigkeiten ermöglicht die Aufnahme von zahlreichen Profilschnitten mit einer Dichte von mehreren Tausend Meßpunkten pro Schnitt。Die iterativ arbeitenden funktionorientierten Auswerteverfahren nach der Hüll,Pferch-,Tangential- oder Minimumbedingung benötigen jedoh Rechenzeiten,die überproportional mit der Meßpunktanzahl steigen。由于使用了先进的检索技术,结果并不令人满意。在没有任何功能的Berechnung der Anliegenden Ersatzelemente努尔wenige Meßpunkte中,Bereichen是一个德国的Verkürzung der Rechenzeit erreicht韦尔登。Ziel des Forschungsvorhabens ist es,Verfahren der optischen und taktilen Gestaltmeßtechnik für Standardform elemente so zu qualifizieren und zu kombinieren,daubeine schnellstmögliche Auswertung mit problemangepaßter Genauigkeit erreicht wird.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Albert Weckenmann其他文献

Professor Dr.-Ing. Albert Weckenmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Albert Weckenmann', 18)}}的其他基金

Publikation zum Schwerpunktprogramm 1159: Neue Strategien der Mess- und Prüftechnik für die Produktion von Mikrosystemen und Nanostrukturen (StraMNano)
优先计划 1159 的出版物:微系统和纳米结构生产的测量和测试技术新策略 (StraMNano)
  • 批准号:
    200513871
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Hochpräzise Erfassung stark gekrümmter Oberflächen durch neigungsabhängige dynamische Sensornachführung mittels rotatorischer Festkörpergelenke
使用旋转固态接头通过倾斜相关的动态传感器跟踪对强弯曲表面进行高精度检测
  • 批准号:
    35614863
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Fuzzy-Logik-gestützte Strategieplanung für die Statistische Versuchsmethodik
统计测试方法的模糊逻辑支持策略规划
  • 批准号:
    5446295
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Grundlagenuntersuchung zur Wirkungsweise von Einflüssen auf das Messergebnis in der Mikro- und Nanoprüftechnik (Weiterförderung des Projekts "Modellierung für die praxisgerechte Messunsicherheitsermittlung in der Mikro- und Nanoprüftechnik")
对微米和纳米测试技术中测量结果影响的基础研究(“微米和纳米测试技术中测量不确定度的实际测定建模”项目的进一步资助)
  • 批准号:
    5436121
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Automatisierte Segmentierung, Registrierung und Fusion von Messpunktwolken zur Prüfung von Mikrobauteilen mit Standardgeometrie Elementen
测量点云的自动分割、注册和融合,用于测试具有标准几何元素的微型组件
  • 批准号:
    5436131
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Methodology for integrated environmental and economic evaluation of products and processes with support of the fuzzy-set theory
在模糊集理论的支持下对产品和过程进行综合环境和经济评价的方法
  • 批准号:
    5352720
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Dreidimensionale optische Wanddickenmessung und Reißererkennung
三维光学壁厚测量和撕裂检测
  • 批准号:
    5182406
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Integrated computerbased assistence system for coordinate Measurements
用于坐标测量的集成计算机辅助系统
  • 批准号:
    5206008
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

半有限von Neumann代数中投影集上的Wigner定理
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
CUL7基因突变导致Von Hippel Lindau蛋白细胞内蓄积增多致3-M综合征软骨细胞分化异常的分子机制研究
  • 批准号:
    82302106
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非交换Weyl-von Neumann定理及其弱形式在von Neumann代数中的拓展
  • 批准号:
    12271074
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
线性保持方法在量子信息研究中的应用
  • 批准号:
    12001420
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
关于算子代数上非交换Weyl-von Neumann定理的研究
  • 批准号:
    12001437
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
模型空间上截断Toeplitz算子的可约性
  • 批准号:
    12001089
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
有限von Neumann代数的相对顺从性
  • 批准号:
    12001085
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
关于超有限II_1因子中一类算子的不变子空间和单个元生成问题的研究
  • 批准号:
    11961037
  • 批准年份:
    2019
  • 资助金额:
    29.0 万元
  • 项目类别:
    地区科学基金项目
算子代数中齐性空间的微分几何结构
  • 批准号:
    11901453
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
非交换Orlicz空间的性质及其闭子空间
  • 批准号:
    11901038
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

循環補助時von Willebrand因子の環境応答評価プラットフォーム創生
创建一个平台,用于评估循环支持期间冯维勒布兰德因子的环境反应
  • 批准号:
    23K25186
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Entropy and Boundary Methods in von Neumann Algebras
冯诺依曼代数中的熵和边界方法
  • 批准号:
    2350049
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
ECMOによるvon Willebrand 因子への影響
ECMO对血管性血友病因子的影响
  • 批准号:
    24K12171
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Approximation properties in von Neumann algebras
冯·诺依曼代数中的近似性质
  • 批准号:
    2400040
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Free Information Theory Techniques in von Neumann Algebras
冯诺依曼代数中的自由信息理论技术
  • 批准号:
    2348633
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
止血タンパク質の発現多様性と止血機能および止血以外の機能に関する基礎研究
止血蛋白表达多样性、止血功能及止血以外功能的基础研究
  • 批准号:
    23H02681
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Pathogenesis of thrombotic microangiopathies
血栓性微血管病的发病机制
  • 批准号:
    10608740
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Novel Broad-Spectrum Point-of-Care Coagulometer
新型广谱护理点凝血计
  • 批准号:
    10707617
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Endothelial von Willebrand factor and the tissue-specific regulation of angiogenesis and vascular integrity
内皮血管性血友病因子和血管生成和血管完整性的组织特异性调节
  • 批准号:
    MR/X021106/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Multimeric Structural Degradation of vWF in Turbulent Flows
vWF 在湍流中的多聚体结构降解
  • 批准号:
    10563289
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了