等質空間上のゼ-タ関数の研究

齐次空间上zeta函数的研究

基本信息

  • 批准号:
    01540080
  • 负责人:
  • 金额:
    $ 0.77万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1989
  • 资助国家:
    日本
  • 起止时间:
    1989 至 无数据
  • 项目状态:
    已结题

项目摘要

等質空間上の有理点集合の完備化とその上の不変測度の理論を構成し、オイラ-積を持たないゼ-タ関数に対しても、岩沢-Tate理論に類似の(局所コンパクト空間上の)積分としての表示が与えられることを示した。副産物として、Siegel流の基本領域の体積として不定方程式の解集合の測度を定義する方法が、実際に測度論として理解できるようになった。概均質ベクトル空間に付随する保型形式係数ゼ-タ関数については、積分表示の存在の根拠が、ある種の等質空間の上の一般化された球関数の空間の有限次元性にあることが明らかになった。典型的なケ-スとしては、コンパクト等質空間、又は、reductive対称空間と関連する概均質ベクトル空間がある。このうち、前者のコンパクト型に対しては、ゼ-タ関数の関数等式が示された。後者の対称空間型の場合は、現在、進行中であるが、対称空間上のPoisson変換の理論を用いることにより関数等式を証明できる見通しである。又、コンパクト型の場合の関数等式の具体的な記述にとって、群の多項式環への作用を既約表現に分決することが重要である。この研究の応用として、群の既約表現を包合的自己同型による固定点のなす部分群に制限したときの重複度が、一種の安定性を満足していることが証明できた。安定した重複度の具体的計算にも、概均質ベクトル空間の理論が有効であるケ-スが見つかった。
Completion of the set of rational points on an equal-quality spaceても, Iwasawa-Tate theory is similar to the integral としてのexpression が and えられることを Reflection した.として by-product, basic field of Siegel flow のvolume として indefinite equation のsolution set のmeasure を definition する method が, measure theory として understanding できる ようになった. Approximately homogeneous ベクトル space にpays with する shape-preserving form coefficient ゼ-タ Off number については, integral expression of existence のroot が,あるkind of のequal space の上のgeneralization されたspherical number のfinite dimensionality of space にあることが明らかになった. Typical なケ-スとしては, コンパクト isohomogeneous space, は, reductive symmetry space, related quasi-homogeneous ベクトル space がある.このうち, the former のコンパクト type に対しては, ゼ-タ Off number の Off number equation が Show された. The latter is the case of the symmetrical space type, and now, the ongoing であるが, and the Poisson dimensional change theory on the symmetrical space are proved by the いることにより Off-number equation and the できる见通しである. In addition, the specific description of the コンパクト type case and the related number equation and the function of the group polynomial ring are important.この Research の応用として、Group の contracted performance をA part that includes the same type of によるfixed point のなすThe group limit is the same as the repeatability, and the stability of the group is the same as the proof. The specific calculation method of stable repeatability and the theory of nearly homogeneous space are effective and effective.

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
F.Sato: "Zeta functions with polynomial coefficients associated with prehomozeneons vector spgces" International Journalof Mathematics.
F.Sato:“具有与预均相向量 spgces 相关的多项式系数的 Zeta 函数”《国际数学杂志》。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A.Fujii: "Zeta Zeros,Hurwitz zeta functions and L(1,x)" Proceedings of Jppan Academy. 65. 139-142 (1989)
A.Fujii:“Zeta Zeros、Hurwitz zeta 函数和 L(1,x)”日本学院论文集。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Shioda: "Frey's elliptic curve as an elliptic surface over the Fermat curve." Commentarii Mathematici Universitatis St.Pauli. 38. 223-232 (1989)
T.Shioda:“弗雷椭圆曲线是费马曲线上的椭圆曲面。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Shioda: "The Galois representation of type E_8 arising from certain Mordel-Weil groups" Proceedings of Japan Academy. 65. 195-197 (1989)
T.Shioda:“来自某些 Mordel-Weil 群的类型 E_8 的伽罗瓦表示”日本学院院刊。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
F.Sato: "On functional equations of zeta distributions" Advanced Studies in pure Mathematics. 15. 465-508 (1989)
F.Sato:“关于 zeta 分布的函数方程”纯数学高级研究。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

佐藤 文広其他文献

Quadratic mappings over(GO(p, q) , R^p+q) and functional Equations
(GO(p, q) , R^p q) 和函数方程的二次映射
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tomoyoshi Ibukiyama;Hidenori Katsurada;Yumiko Hironaka;木村 達雄;Tatsuo Kimura;佐藤 文広;佐藤 文広;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;佐藤 文広;Fumihiro Sato;広中 由美子;伊吹山 知義;Tomoyoshi Ibukiyama;広中 由美子;広中 由美子;Yumiko Hironaka;木村 達雄;Tatsuo Kimura;佐藤 文広;木村 達雄;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;Fumihiro Sato;佐藤 文広;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;Fumihiro Sato
  • 通讯作者:
    Fumihiro Sato
局所密度の一次独立性とその保型形式の数論への応用
局域密度线性无关及其自守形式在数论中的应用
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tomoyoshi Ibukiyama;Hidenori Katsurada;Yumiko Hironaka;木村 達雄;Tatsuo Kimura;佐藤 文広;佐藤 文広;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;佐藤 文広;Fumihiro Sato;広中 由美子;伊吹山 知義;Tomoyoshi Ibukiyama;広中 由美子;広中 由美子;Yumiko Hironaka;木村 達雄;Tatsuo Kimura;佐藤 文広;木村 達雄;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;Fumihiro Sato;佐藤 文広;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;Fumihiro Sato;広中 由美子
  • 通讯作者:
    広中 由美子
On the functional equations of shpherical functions on certain spherical homogeneous space
关于某球齐次空间上球函数的泛函方程
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tomoyoshi Ibukiyama;Hidenori Katsurada;Yumiko Hironaka;木村 達雄;Tatsuo Kimura;佐藤 文広;佐藤 文広;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;佐藤 文広;Fumihiro Sato;広中 由美子;伊吹山 知義;Tomoyoshi Ibukiyama;広中 由美子;広中 由美子;Yumiko Hironaka;木村 達雄;Tatsuo Kimura;佐藤 文広;木村 達雄;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;Fumihiro Sato;佐藤 文広;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;Fumihiro Sato;広中 由美子;Yumiko Hironaka;佐藤 文広;Fumihiro Sato;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;Fumihiro Sato;広中 由美子;Yumiko Hironaka;広中 由美子;Yumiko Hironaka;佐藤 文広;Fumihiro Sato;広中 由美子;Yumiko Hironaka;広中 由美子;Yumiko Hironaka;佐藤 文広;Fumihiro Sato;伊吹山 知義;Tomoyoshi Ibukiyama;広中 由美子;Yumiko Hironaka;伊吹山 知義;Tomoyoshi Ibukiyama;広中 由美子;Yumiko Hironaka
  • 通讯作者:
    Yumiko Hironaka
Representations of Clifford algebras and quartic polynomials with local functiollal equationss
具有局部函数方程的 Clifford 代数和四次多项式的表示
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tomoyoshi Ibukiyama;Hidenori Katsurada;Yumiko Hironaka;木村 達雄;Tatsuo Kimura;佐藤 文広;佐藤 文広;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広
  • 通讯作者:
    佐藤 文広
Quadratic Mappings and Zeta Functions
二次映射和 Zeta 函数
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tomoyoshi Ibukiyama;Hidenori Katsurada;Yumiko Hironaka;木村 達雄;Tatsuo Kimura;佐藤 文広;佐藤 文広;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;佐藤 文広;Fumihiro Sato;広中 由美子;伊吹山 知義;Tomoyoshi Ibukiyama;広中 由美子;広中 由美子;Yumiko Hironaka;木村 達雄;Tatsuo Kimura;佐藤 文広;木村 達雄;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;Fumihiro Sato;佐藤 文広;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;Fumihiro Sato;広中 由美子;Yumiko Hironaka;佐藤 文広;Fumihiro Sato;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広
  • 通讯作者:
    佐藤 文広

佐藤 文広的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('佐藤 文広', 18)}}的其他基金

極小表現に基づくテータ級数の一般化
基于最小表示的 theta 级数的推广
  • 批准号:
    10874008
  • 财政年份:
    1998
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
弱球等質空間上のアイゼンシュタイン級数
弱球齐次空间的爱森斯坦级数
  • 批准号:
    07640074
  • 财政年份:
    1995
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
概均質ベクトル空間のゼ-タ関数の研究
近似齐次向量空间中的zeta函数研究
  • 批准号:
    03640103
  • 财政年份:
    1991
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
p進体上の半単純対称空間の球関数の研究
p-进场上半单对称空间中的球函数研究
  • 批准号:
    58740053
  • 财政年份:
    1983
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
概白質ベクトル空間の多変数Zeta関数の研究
近似白质向量空间多元Zeta函数研究
  • 批准号:
    X00210----574050
  • 财政年份:
    1980
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

志村多様体および局所対称空間のコホモロジー
Shimura 流形和局部对称空间的上同调
  • 批准号:
    24K16895
  • 财政年份:
    2024
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
対称空間の幾何学の深化と応用および離散化
对称空间几何与离散化的深化与应用
  • 批准号:
    23K22395
  • 财政年份:
    2024
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
全測地的部分多様体を用いた例外型対称空間の極大対蹠集合の分類・構成
使用总测地线子流形对异常对称空间的最大对映集进行分类和构造
  • 批准号:
    23K12980
  • 财政年份:
    2023
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
対称空間・多変数超幾何関数・パンルベ関数の理論に依拠したランダム行列理論の展開
基于对称空间、多元超几何函数和 Painlevé 函数理论的随机矩阵理论的发展
  • 批准号:
    23K03227
  • 财政年份:
    2023
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
カンドルと対称空間の観点からの結び目の不変量の研究
坦诚空间和对称空间视角下的结不变量研究
  • 批准号:
    22KJ2084
  • 财政年份:
    2023
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
対称空間の対蹠集合の応用と関連する幾何学の研究
对映集在对称空间中的应用及相关几何研究
  • 批准号:
    23K03100
  • 财政年份:
    2023
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
対称空間上の解析学
对称空间分析
  • 批准号:
    23KJ2118
  • 财政年份:
    2023
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
対称空間の幾何学の深化と応用および離散化
对称空间几何与离散化的深化与应用
  • 批准号:
    22H01124
  • 财政年份:
    2022
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
対称空間の観点からの Damek-Ricci 空間の一般化とその幾何構造の研究
对称空间视角下Damek-Ricci空间的推广及其几何结构研究
  • 批准号:
    22K13919
  • 财政年份:
    2022
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
対称空間の一般化およびその極地と対蹠集合の幾何学的研究
对称空间的推广及其极集和对映集的几何研究
  • 批准号:
    21K03250
  • 财政年份:
    2021
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了