RESEARCH OF STACKED TWIN-ACTIVE LAYER GaInAsP/InP DYNAMIC SINGLE MODE LASERS

叠式双活性层GaInAsP/InP动态单模激光器的研究

基本信息

  • 批准号:
    63550295
  • 负责人:
  • 金额:
    $ 1.47万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1988
  • 资助国家:
    日本
  • 起止时间:
    1988 至 1989
  • 项目状态:
    已结题

项目摘要

1)The novel stacked twin-active layer structure consisted of two laser regions stacked along the vertical direction, which are connected each other through tunnel junction. When we use this structure for dynamic single mode lasers, a grating is integrated in the tunnel junction part corrugating the surface.2)First, we clarified the impurity doping condition to get a low reverse junction voltage for simple GaInAsP/InP tunnel junctions because the low voltage was essential for connecting two lasers. GaInAsP/InP stacked twin-active layer lasers were fabricated by a liquid phase epitaxy controlling the layer thicknesses in designed values, and the growth condition to connect two active layers by the tunnel junction was obtained. The threshold current density was 2.5kA/cm^2 in average, which was comparable with conventional DH lasers without active layer stack.3)Using the Laser wafer, ridge-waveguide lasers with the stripe width of 3mum were fabricated to get the threshold current of 6OmA a … More t 1.5mum in wavelength. Eventually introducing buried heterostructure is essential, so we tried the use of mass- transportation method to fabricate the buried heterostructure laser. But the degradation of tunneling property was observed after the high temperature annealing process. Thus it was confirmed that the embedding by use of high resistive semiconductors was the only method to embed such a multiple active layers structure.4)The laser waveguide of the stacked twin-active layer GaInAsP/InP dynamic single mode laser was analyzed theoretically. The waveguide design for the fundamental transverse mode operation was given and the laser was fabricated by liquid phase epitaxy. After the growth, the depth of grating became shallow in 200-300A^^゚. This is a specific problem for liquid phase epitaxy, so to avert such a grating deformation the use of molecular beam epitaxy is needed. The threshold current density was 3-4KA/cm^2.5)Through the investigation of lasing properties, it was clarified that for the stacked twin-active layer laser, to equate the thickness of upper and lower active layers was important. So the gas-source molecular beam epitaxy (MBE) with a high thickness controllability, was introduced because GaInAsP compounds could be grown though using MBE. The fundamental growth condition of phosphide compounds such as GaInP and so on was obtained. Less
1)新型叠层双有源层结构由两个沿垂直方向堆积的激光区域组成,它们通过隧道结相互连接。当我们将这种结构用于动态单模激光器时,在形成表面波纹的隧道结部分集成了一个光栅。2)首先,我们澄清了杂质掺杂条件,以获得简单的GaInAsP/InP隧道结的低反向结电压,因为低电压是连接两个激光器的必要条件。采用液相外延技术制备了GaInAsP/InP叠层双有源层激光器,得到了通过隧道结连接两个有源层的生长条件。平均阈值电流密度为2.5kA/cm~2,与传统的无有源层叠层的双异质结激光器相当。3)利用该激光器制作了条纹宽度为3um的脊波导型激光器,阈值电流为6omA a…波长大于1.5微米。最终引入掩埋异质结是必要的,所以我们尝试使用物质输运的方法来制作掩埋异质结激光器。但在高温退火过程中观察到了隧道效应的退化。4)对叠层双有源层GaInAsP/InP动态单模激光器的激光波导进行了理论分析。给出了用于基横模运转的光波导设计,并用液相外延法制备了激光器。生长后,在200-300A^゚范围内,栅层深度变浅。对于液相外延来说,这是一个特殊的问题,因此为了避免这种光栅变形,需要使用分子束外延。阈值电流密度为3-4kA/cm2.5)。通过对激光特性的研究,阐明了对于堆积双有源层激光器来说,上下有源层厚度相等是非常重要的。由于气源分子束外延可以生长GaInAsP化合物,因此引入了厚度可控的气态源分子束外延技术。得到了GaInP等磷化物化合物生长的基本条件。较少

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
岸野克巳,加藤美一,金子和: "Structure Design of Stacked Twin-Active Layer GaInAsP/InP DFB Lasers" IEEE J.Quantum Electron.
Katsumi Kishino、Yoshikazu Kato、Kazu Kaneko:“堆叠式双活性层 GaInAsP/InP DFB 激光器的结构设计”IEEE J.Quantum Electron。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
菊池昭彦,金子和,野村一郎,岸野克巳: "Gas Source Molecular Beam Epitaxial Growth of High Optical Quality GaInP and GaInP/AlInP Multiple Quantum Wells" to be published in the Conference Series of Trans Tech Publications Ltd.,(for 1st Int.Conf.on Epitaxial Crystal Grwth).
Akihiko Kikuchi、Kazu Kaneko、Ichiro Nomura、Katsumi Kishino:“高光学质量 GaInP 和 GaInP/AlInP 多量子阱的气源分子束外延生长”将在 Trans Tech Publications Ltd. 会议系列中发表(第一届 Int) .关于外延晶体生长的会议)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Kishino, Y.Katoh and Y.Kaneko: ""Structure Design of Stacked Twin-Active Layer GaInAsP/InP DFB Lasers"" IEEE J.Quantum Electron.
K.Kishino、Y.Katoh 和 Y.Kaneko:“堆叠式双活性层 GaInAsP/InP DFB 激光器的结构设计””IEEE J.Quantum Electron。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
加藤美一,岸野克巳,金子和: "2段活性層構造GaInAsP/InP DFBレ-ザの構造設計と作製" 電子情報通信学会,光量子エレクトロニクス研究会. OQEー88ー150. 1-8 (1989)
Yoshikazu Kato、Katsumi Kishino、Kazu Kaneko:“具有两级有源层结构的 GaInAsP/InP DFB 激光器的结构设计和制造”,电子、信息和通信工程师研究所,光子量子电子研究组。 -8 (1989) )
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Katoh, K.Kishino and Y.Kaneko: ""Structure Design and Fabrication of Stacked Twin-Active Layer GaInAsP/InP DFB lasers"" IEICE, Opticalquantum Electronics Research Meeting, OQE-88-150, pp.1-8, 1989.
Y.Katoh、K.Kishino 和 Y.Kaneko:“堆叠式双活性层 GaInAsP/InP DFB 激光器的结构设计和制造” IEICE,光量子电子研究会议,OQE-88-150,第 1-8 页,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KISHINO Katsumi其他文献

KISHINO Katsumi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KISHINO Katsumi', 18)}}的其他基金

Innovation of Three Primary Colors Emitting Devices by Nanocolumn Crystals
纳米柱晶体三基色发光器件的创新
  • 批准号:
    19H00874
  • 财政年份:
    2019
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Innovation of energy and environment-friendly devices by nanocrystal effect
纳米晶效应创新能源环保器件
  • 批准号:
    24000013
  • 财政年份:
    2012
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Specially Promoted Research
Basic research on optical communication wavelength inter-subband transition of III-nitride semiconductors
III族氮化物半导体光通信波长子带间跃迁基础研究
  • 批准号:
    14205057
  • 财政年份:
    2002
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Study of Ill-V Nitride Semiconductor Resonant Cavity Enhanced Photodetector by Molecular Beam Epitaxy
III-V族氮化物半导体谐振腔增强型分子束外延光电探测器研究
  • 批准号:
    09650388
  • 财政年份:
    1997
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on II-VI Compounds Semiconductor Lasers
II-VI族化合物半导体激光器的研究
  • 批准号:
    04452178
  • 财政年份:
    1992
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)

相似海外基金

Study of X-ray detector using Superconducting Tunnel Junction with Silicon Pixel Absorber
硅像素吸收体超导隧道结X射线探测器研究
  • 批准号:
    22K12676
  • 财政年份:
    2022
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spintronic Spectrum Analyzer and Limiter based on Tunable Magnetic Tunnel Junction Arrays
基于可调谐磁隧道结阵列的自旋电子频谱分析仪和限制器
  • 批准号:
    2203242
  • 财政年份:
    2022
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Standard Grant
CISE-ANR: FET: Small: Hybrid Stochastic Tunnel Junction Circuits for Optimization and Inference
CISE-ANR:FET:小型:用于优化和推理的混合随机隧道结电路
  • 批准号:
    2121957
  • 财政年份:
    2021
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Standard Grant
Tunnel Junction Characterization and Optimization for Quantum Computing Applications
量子计算应用的隧道结表征和优化
  • 批准号:
    543854-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Collaborative Research and Development Grants
Tunnel Junction Based AlGaN Ultraviolet Lasers
基于隧道结的 AlGaN 紫外激光器
  • 批准号:
    2034140
  • 财政年份:
    2020
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Standard Grant
CAREER: Capturing Biological Behavior in Three-Terminal Magnetic Tunnel Junction Synapses and Neurons for Fully Spintronic Neuromorphic Computing
职业:捕捉三端磁隧道连接突触和神经元的生物行为,以实现全自旋电子神经形态计算
  • 批准号:
    1940788
  • 财政年份:
    2020
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Continuing Grant
Tunnel Junction Characterization and Optimization for Quantum Computing Applications
量子计算应用的隧道结表征和优化
  • 批准号:
    543854-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Collaborative Research and Development Grants
Fabrication of tunnel junction devices using antiferromagnetic materials for the realization of ultra-high-density memories
使用反铁磁材料制造隧道结器件以实现超高密度存储器
  • 批准号:
    20K04569
  • 财政年份:
    2020
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Tunnel Junction Characterization and Optimization for Quantum Computing Applications
量子计算应用的隧道结表征和优化
  • 批准号:
    543854-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Collaborative Research and Development Grants
Development of superconducting-tunnel-junction X-ray detectors with superconducting coils
带超导线圈的超导隧道结X射线探测器的研制
  • 批准号:
    17K14141
  • 财政年份:
    2017
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了