非線型偏微分方程式の解の構造の解析

非线性偏微分方程解的结构分析

基本信息

  • 批准号:
    03640199
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1991
  • 资助国家:
    日本
  • 起止时间:
    1991 至 无数据
  • 项目状态:
    已结题

项目摘要

1.研究代表者を中心として得られた知見(1)非線形熱方程式の爆発解の挙動について著しく解析が進展した。この研究には無限次元力学系の理論が役立った。(2)退化した拡散方程式の解のふるまいについて力学系の立場から考察し、ある場合にアトラクタ-の次元が無限大になることを示した(ロ-マ第2大学M.Pozioと共同研究)。(3)変分問題の立場から非線形偏微分方程式の解の形状を調べるのに有効な『リアレンジメント』の理論に関し、等可測連続変形の理論を提唱し、空間1次元の場合にその有効性を示した。これにより、これまで最小解に対して知られていた対称性や単調性などの性質が極小解に対しても成立することが明らかにな った(ハイデルベルク大学B.Kawohlとの共同研究)。2.研究分担者を中心として得られた知見(1)非線形シュレディンガ-方程式の爆発解の興味ある挙動が明らかになった(提誉志雄)。爆発解の挙動は、非線形項が臨界指数をもつ場合は、シュレディンガ-方程式のそれはL^2ー凝縮と呼ばれるもので、非線形熱方程式の爆発解の挙動とは大きく様相を異にする。この差異を詳しく解析することは二つの方程式の構造の違いを深く理解することにつながり、当研究者と、研究代表者の間の研究討議は大変意義深いものであった。(2)リ-マン面土のフックス型微分方程式のなすモジュライ空間の構成をおこない、その空間のポアソン幾何的研究を行なった(岩崎克則)。この研究により、種々の完全積分ハ ミルトン方程式系が導出され、これら方程式系がハミルトン系である内在的理由が明らかにされた。(3)リ-マン面の1パラメ-タ族の退化曲面の写像類に関する研究(松本幸夫)
1. The center for research represent を と し て must ら れ た knowledge explosion (1) the nonlinear heat equation is の 発 solution の 挙 dynamic に つ い て the し く parsing が progress し た. The に に study of the department of infinite-dimensional mechanics <s:1> theory が and the った stand firm った. (2) degradation し た company, dispersion equation is の solution の ふ る ま い に つ い て force department の position か ら し, あ る occasions に ア ト ラ ク タ - の dimensional が infinite に な る こ と を shown し た (ロ - マ 2 university M.P ozio と joint research). の position (3) - points か ら nonlinear partial differential equation is の solution の shape を adjustable べ る の に have sharper な "リ ア レ ン ジ メ ン ト" の theory に masato し, such as measurable even 続 - を mention sing し の theory, space 1 yuan の occasions に そ の have sharper sex を shown し た. こ れ に よ り, こ れ ま で minimal solution に し seaborne て know ら れ て い た said sex seaborne や 単 tonal な ど の nature が minimal solution に し seaborne て も established す る こ と が Ming ら か に な っ た (ハ イ デ ル ベ ル ク university B.K awohl と の joint research). 2. Research sharers を center と し て have ら れ た knowledge (1) nonlinear シ ュ レ デ ィ ン ガ - equation is の 発 solution の tumblers あ る 挙 dynamic が Ming ら か に な っ た (2 reputation dargerven). Blasting 発 solution の 挙 は, nonlinear item が critical index を も つ は, シ ュ レ デ ィ ン ガ - equation is の そ れ は L ^ 2 ー condensation と shout ば れ る も の で explosion, nonlinear heat equation is の 発 solution の 挙 dynamic と は big き く others in phase を different に す る. こ の differences を detailed し く parsing す る こ と は two つ の equation is の tectonic の violations い を deeper understanding す く る こ と に つ な が り representatives, when the researchers と, research between の の research discuss は big - meaning deep い も の で あ っ た. (2) リ - マ ン surface soil の フ ッ ク ス type differential equations の な す モ ジ ュ ラ イ space の constitute を お こ な い, そ の space の ポ ア ソ ン line geometry research を な っ た (mineko iwasaki grams). こ の research に よ り, kind of 々 の complete integral ハ ミ ル ト ン equation system が export さ れ, こ れ ら equation system が ハ ミ ル ト ン department で あ る inherent reason が Ming ら か に さ れ た. (3) A study on the に Relationship する of the imaging class of リ- surface <s:1> 1パラメ-タ family <s:1> degenerate surface <e:1> (Yukio Matsumoto)

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

俣野 博其他文献

Traveling Waves in Spatially Random Media (Mathematical Economics)
現代解析学への誘い
现代分析的邀请
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    俣野 博
  • 通讯作者:
    俣野 博

俣野 博的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('俣野 博', 18)}}的其他基金

非線形放物型方程式の解のダイナミクスと波面の伝播現象
非线性抛物方程解的动力学和波前传播现象
  • 批准号:
    23K20807
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Dynamics of solutions of nonlinear parabolic equations and front propagation phenomena
非线性抛物方程解的动力学和前传播现象
  • 批准号:
    21H00995
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Studies on spreading fronts in reaction-diffusion systems and related free boundary problems
反应扩散系统中的扩散前沿及相关自由边界问题的研究
  • 批准号:
    17F17021
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
非線形放物型方程式の進行波に対する新手法の研究
非线性抛物方程行波新方法研究
  • 批准号:
    06F06325
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
漸近解析と数値的手法を用いた非線形偏微分方程式の研究
使用渐近分析和数值方法研究非线性偏微分方程
  • 批准号:
    05F05047
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
非線形偏微分方程式の解の構造と特異摂動問題の研究
非线性偏微分方程与奇异摄动问题的解结构研究
  • 批准号:
    01F00178
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
非線型偏微分方程式の解の構造の解析およびその構造
非线性偏微分方程解的结构及其结构分析
  • 批准号:
    02640163
  • 财政年份:
    1990
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
非線形偏微分方程式の解の構造の解析,およびその応用
非线性偏微分方程解的结构分析及其应用
  • 批准号:
    62740126
  • 财政年份:
    1987
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
非線型偏微分方程式の解の構造の解析, およびその応用
非线性偏微分方程解的结构分析及其应用
  • 批准号:
    60740115
  • 财政年份:
    1985
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

分数冪ラプラス作用素を伴う非線形拡散方程式に関する変分解析および数値解析
具有分数幂拉普拉斯算子的非线性扩散方程的变分和数值分析
  • 批准号:
    24KJ0381
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
非局所反応拡散方程式がつくるパターンと積分核の形状との関係
非局部反应扩散方程创建的模式与积分核形状之间的关系
  • 批准号:
    24K06877
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
エントロピー法による被食者捕食者型反応拡散方程式系の侵入現象と伝播現象の解明
用熵法阐明捕食者反应扩散方程组中的入侵和传播现象
  • 批准号:
    24K06817
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
特異摂動法の新しい理論と応用ー細胞極性に関する反応拡散方程式モデルの数理解析ー
奇异摄动法新理论及应用-细胞极性反应扩散方程模型的数学分析-
  • 批准号:
    24K06845
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
二重臨界の場合を含む整数階・非整数階反応拡散方程式の時間局所可解性と解の収束条件
整数阶和非整数阶反应扩散方程的时间局部可解性和解收敛条件,包括双临界情况
  • 批准号:
    24KJ2048
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
連続的/離散的な媒質上の非線型拡散方程式~横断的解析と漸近的解析~
连续/离散介质上的非线性扩散方程~截面分析和渐近分析~
  • 批准号:
    24K06799
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
非局所型移流拡散方程式の解の局所正則性理論の構築
非局部平流扩散方程解的局部正则理论的构建
  • 批准号:
    24K16953
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
移流拡散方程式の解の大域的漸近挙動の解析
平流扩散方程解的全局渐近行为分析
  • 批准号:
    23K19005
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
一般化エントロピーによる移流拡散方程式の臨界現象の解明
使用广义熵阐明平流扩散方程中的关键现象
  • 批准号:
    23KJ1823
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
1-ラプラス作用素とp-ラプラス作用素を含む特異拡散方程式の弱解の正則性
涉及1-Laplace算子和p-Laplace算子的奇异扩散方程弱解的正则性
  • 批准号:
    22KJ0861
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了