非線型偏微分方程式の解の構造の解析およびその構造
非线性偏微分方程解的结构及其结构分析
基本信息
- 批准号:02640163
- 负责人:
- 金额:$ 1.34万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1990
- 资助国家:日本
- 起止时间:1990 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1.ある種の非線形拡散方程式の解は有限時間で消滅する(ある時刻以後は恒等的にゼロになる)ことが知られている。本研究では、以前知られていなかった、消滅時刻付近での解の詳しい挙動を解析することに成功した。この方程式は、例えばプラズマ中の熱の伝播(輻射のため熱エネルギ-は急速に失なわれる)や、多孔性媒質中の拡散現象(ただし蒸発等により総質量は急速に減少するような系)のモデルとして現れる。本研究で明らかにしたのは、解が消滅する際に、解の台(解が正の値をとる領域のこと;この外では解はゼロ)の各連結成分が収縮して、1点に縮まるという事実である(論文Finiteーpoint extinction and continuity of interfaces in a nonlinear diffusion equation with strong absorption)。これは、以前に行なわれていた数値実験でも結果がはっきりせず、結論がでていなかった。ただしこの研究の成果は空間1次元の場合に限られ、多次元の場合は今後の課題として残っている。上記の研究には、研究分担者の増田、岩崎(解析学)との討議が大いに役立った。また、拡散現象に対する確率論の立場からの示唆を小谷から受け、非常に参考になった。2.非線形楕円型方程式の特異解の分類に大きな進展を見た(論文Singular solutions of a nonlinear elliptic equation and an infinite dimensional dynamical system)。これは量子力学におけるト-マス・フェルミ理論に現れるのと同種の方程式である。解析学の問題を、無限次元力学系の観点から定式化しなおし、解析学と幾何学の手法を併用することによって、大域的な研究を行ない得た。これに関し、分担者の落合、松本(幾何学)との研究討議が、解析学の問題に幾何学的視点を導入する上で非常に役立った。
1. The solution of the non-linear dispersion equation is eliminated in finite time. This study is successful in analyzing the detailed information of the previous knowledge and elimination time. This equation is an example of heat dissipation in porous media (radiation, heat generation, rapid loss) and heat dissipation in porous media. In this paper, we study the relationship between the interaction between the positive value and the negative value and the continuity of interfaces in a nonlinear diffusion equation with strong absorption. The result of the experiment is that the result of the experiment is different from the result of the experiment. The results of this research are limited to spatial one-dimensional situations and multi-dimensional situations. On the note of the research, the research participants Noda, Iwasaki (analysis) and discussion of the big middle service set up For example, if you want to know more about this phenomenon, you can use it as a reference. 2. A Review of Singular Solutions of a Nonlinear Elliptic Equation and an Infinite Dimensional Dynamic System. The same equation is found in quantum mechanics. The problems of analytical science, the problems of infinite dimensional mechanics, the problems of analytical geometry, and the problems of large domains are solved. This is a very important topic for discussion on the integration of analytical problems and geometric problems.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
俣野 博其他文献
Traveling Waves in Spatially Random Media (Mathematical Economics)
- DOI:
- 发表时间:
2003-08 - 期刊:
- 影响因子:0
- 作者:
俣野 博 - 通讯作者:
俣野 博
俣野 博的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('俣野 博', 18)}}的其他基金
非線形放物型方程式の解のダイナミクスと波面の伝播現象
非线性抛物方程解的动力学和波前传播现象
- 批准号:
23K20807 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Dynamics of solutions of nonlinear parabolic equations and front propagation phenomena
非线性抛物方程解的动力学和前传播现象
- 批准号:
21H00995 - 财政年份:2021
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Studies on spreading fronts in reaction-diffusion systems and related free boundary problems
反应扩散系统中的扩散前沿及相关自由边界问题的研究
- 批准号:
17F17021 - 财政年份:2017
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for JSPS Fellows
非線形放物型方程式の進行波に対する新手法の研究
非线性抛物方程行波新方法研究
- 批准号:
06F06325 - 财政年份:2006
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for JSPS Fellows
漸近解析と数値的手法を用いた非線形偏微分方程式の研究
使用渐近分析和数值方法研究非线性偏微分方程
- 批准号:
05F05047 - 财政年份:2005
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for JSPS Fellows
非線形偏微分方程式の解の構造と特異摂動問題の研究
非线性偏微分方程与奇异摄动问题的解结构研究
- 批准号:
01F00178 - 财政年份:2001
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for JSPS Fellows
非線型偏微分方程式の解の構造の解析
非线性偏微分方程解的结构分析
- 批准号:
03640199 - 财政年份:1991
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
非線形偏微分方程式の解の構造の解析,およびその応用
非线性偏微分方程解的结构分析及其应用
- 批准号:
62740126 - 财政年份:1987
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
非線型偏微分方程式の解の構造の解析, およびその応用
非线性偏微分方程解的结构分析及其应用
- 批准号:
60740115 - 财政年份:1985
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
相似海外基金
ターゲット特異的な長鎖DNAメチル化解析法の開発と乳がんでの応用解析
靶点特异性长链DNA甲基化分析方法的开发及其在乳腺癌中的应用分析
- 批准号:
23K27160 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
力学系・流体力学の応用解析的研究
动力系统和流体力学的应用分析研究
- 批准号:
18K13443 - 财政年份:2018
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
流体力学などに現れる非線形偏微分方程式の応用解析
流体力学等中出现的非线性偏微分方程的应用分析
- 批准号:
09F09024 - 财政年份:2009
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for JSPS Fellows
微小領域消化管ペースメーカ活動伝搬のMEA応用解析による薬効病態評価の新技術開発
开发利用 MEA 评估药物疗效和病理状况的新技术,应用微区域胃肠起搏器活动传播分析
- 批准号:
21659187 - 财政年份:2009
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
医学・工学に現れる逆問題への応用解析
医学和工程中出现的反问题的应用分析
- 批准号:
15740058 - 财政年份:2003
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
離散型非線形可積分糸の理論とその応用解析
离散非线性可积螺纹理论及其应用分析
- 批准号:
09740164 - 财政年份:1997
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
離散型非線形可積分系の基礎理論とその応用解析
离散非线性可积系统基本理论及其应用分析
- 批准号:
08750090 - 财政年份:1996
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
非線形可積分系による応用解析
使用非线性可积系统的应用分析
- 批准号:
06221111 - 财政年份:1994
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
流体力学にあらわれる方程式の境界値問題の応用解析的研究
流体力学方程边值问题的应用分析研究
- 批准号:
06640275 - 财政年份:1994
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
関数方程式の応用解析と数値解析
函数方程的应用分析和数值分析
- 批准号:
05640251 - 财政年份:1993
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)