Studies on spreading fronts in reaction-diffusion systems and related free boundary problems

反应扩散系统中的扩散前沿及相关自由边界问题的研究

基本信息

  • 批准号:
    17F17021
  • 负责人:
  • 金额:
    $ 1.47万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
  • 财政年份:
    2017
  • 资助国家:
    日本
  • 起止时间:
    2017-04-26 至 2019-03-31
  • 项目状态:
    已结题

项目摘要

【前半】 Ding氏と俣野は,29年度から共同で研究を進めていた,時間周期的な係数をもつ R 上の半線形拡散方程式の定性的性質に関する論文を完成させた.論文の具体的内容は,コンパクトな台をもつ初期値から出発した非負解のダイナミクスの完全な分類である.この研究により,係数が時間変数に依存しない自励系の場合と類似した結果が時間周期系に対しても成り立つことがわかったが,時間周期解の構造は定常解の構造よりはるかに複雑であるので,証明は格段に困難であった.しかし,交点数非増大則と無限次元力学系の理論を巧妙に組み合わせた議論を何層にも展開して,この困難を克服することができた.(Journal de Mahematiques Pure et Appliques に投稿済み.)【後半】Ding氏と俣野は,上と同じ時間周期的な係数をもつ R 上の半線形拡散方程式を考察し,別の角度から,解の漸近挙動を論じた.詳しく述べると,上記の研究では解の漸近挙動を通常のω極限集合の概念を用いて論じたのに対し,この研究では,ω極限集合の概念を広げた「拡張ω極限集合」なるものを用いて論じている点が異なる.両者の違いは,ω極限集合が,空間領域の固定した位置から解の長時間経過後の挙動を観察するのに対し,Ω極限集合では,空間内を自由に移動する観測者から見える挙動の全体を考える点にある.多重安定な非線形項をもつ方程式の場合,速度が異なる複数の波面が一つの解の中に併存することがあるが,Ω極限集合を用いると,それらすべてを把握することが可能となる.この研究により,空間周期的な非線形項をもつ方程式に対して,係数が時間に依存しない方程式に対して知られている「進行テラス解」の理論と同様の結果が成り立つことを示すことができた.なお,この研究においても,交点数非増大則が中心的な役割を演じた.(論文は完成しており,投稿準備中.)
[first half] Ding's Minamata field, 29 years of joint research has been in progress, and the number of time cycles has been improved. The qualitative analysis of the semi-linear discrete equation on the time cycle has been completed. The specific content of the paper is clear. In the first half of the year, in the first half of the year, in Minamata, in the first half of the year, in Minamata, in the year 29, the joint study of the cycle was completed in terms of the qualitative analysis of the semi-linear dispersion equation. The number of time-dependent self-excitation systems is similar to the results of the test results. The time cycle is related to the operating system, and the time-cycle solution is used to solve the problem, to copy the data, and to identify the block segment. In terms of the number of points, the Department of Mechanics of the Department of Mechanics has skillfully organized a joint discussion on how to open a discussion, and the difficulty of overcoming the problem of Journal de Mahematiques Pure et Appliques contribution. [the second half] Ding's Minamata field, in the same time cycle, the semi-linear dispersion equation is reviewed, and the angle is different. In this paper, the concept of limited collection is used. The concept of limited set is used. The concept of limited set is used. In the space field, the fixed position monitoring system is used for a long time, the collection is limited, and those who are free to move in space can see the full test point. The equations of multiple stability non-linear equations are compatible, and the speed response is complex. The wave surface is stored in the solution. Ω limit the collection and use of equipment, equipment, etc., the number of non-linear equations of the space cycle, the equation of non-linear terms of the space cycle, the equation of the equation of time dependence, the equation of mathematical understanding, the theory theory, the results, the analysis, the simulation, the analysis, the simulation, the analysis, the result, the The number of intersection points is not the performance of the service cutting center. (the article has been completed and the contribution is being prepared.)

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spatially periodic bistable traveling wave
空间周期双稳态行波
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ding Weiwei;Du Yihong;Liang Xing;Weiwei Ding;Weiwei Ding;Weiwei Ding
  • 通讯作者:
    Weiwei Ding
Spreading in space-time periodic media governed by a monostable equation with free boundaries
在由具有自由边界的单稳态方程控制的时空周期性介质中的传播
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ding Weiwei;Du Yihong;Liang Xing;Weiwei Ding;Weiwei Ding;Weiwei Ding;Weiwei Ding;Weiwei Ding;Ding Weiwei
  • 通讯作者:
    Ding Weiwei
Dynamics of time-periodic reaction-diffusion equations with compact initial support
具有紧初始支持的时间周期反应扩散方程的动力学
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ding Weiwei;Du Yihong;Liang Xing;Weiwei Ding;Weiwei Ding;Weiwei Ding;Weiwei Ding;Weiwei Ding
  • 通讯作者:
    Weiwei Ding
Bistaable traveling wave for reaction-diffusion equations in a periodic habitat
周期性栖息地反应扩散方程的双稳态行波
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ding Weiwei;Du Yihong;Liang Xing;Weiwei Ding
  • 通讯作者:
    Weiwei Ding
Spreading in space-time periodic media governed by a monostable equation with free boundaries, Part 2: Spreading speed
由具有自由边界的单稳态方程控制的时空周期性介质中的传播,第 2 部分:传播速度
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

俣野 博其他文献

Traveling Waves in Spatially Random Media (Mathematical Economics)
現代解析学への誘い
现代分析的邀请
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    俣野 博
  • 通讯作者:
    俣野 博

俣野 博的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('俣野 博', 18)}}的其他基金

非線形放物型方程式の解のダイナミクスと波面の伝播現象
非线性抛物方程解的动力学和波前传播现象
  • 批准号:
    23K20807
  • 财政年份:
    2024
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Dynamics of solutions of nonlinear parabolic equations and front propagation phenomena
非线性抛物方程解的动力学和前传播现象
  • 批准号:
    21H00995
  • 财政年份:
    2021
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
非線形放物型方程式の進行波に対する新手法の研究
非线性抛物方程行波新方法研究
  • 批准号:
    06F06325
  • 财政年份:
    2006
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
漸近解析と数値的手法を用いた非線形偏微分方程式の研究
使用渐近分析和数值方法研究非线性偏微分方程
  • 批准号:
    05F05047
  • 财政年份:
    2005
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
非線形偏微分方程式の解の構造と特異摂動問題の研究
非线性偏微分方程与奇异摄动问题的解结构研究
  • 批准号:
    01F00178
  • 财政年份:
    2001
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
非線型偏微分方程式の解の構造の解析
非线性偏微分方程解的结构分析
  • 批准号:
    03640199
  • 财政年份:
    1991
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
非線型偏微分方程式の解の構造の解析およびその構造
非线性偏微分方程解的结构及其结构分析
  • 批准号:
    02640163
  • 财政年份:
    1990
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
非線形偏微分方程式の解の構造の解析,およびその応用
非线性偏微分方程解的结构分析及其应用
  • 批准号:
    62740126
  • 财政年份:
    1987
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
非線型偏微分方程式の解の構造の解析, およびその応用
非线性偏微分方程解的结构分析及其应用
  • 批准号:
    60740115
  • 财政年份:
    1985
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

分数冪ラプラス作用素を伴う非線形拡散方程式に関する変分解析および数値解析
具有分数幂拉普拉斯算子的非线性扩散方程的变分和数值分析
  • 批准号:
    24KJ0381
  • 财政年份:
    2024
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
非線形拡散方程式の抽象理論の構築と走化性方程式の数学解析
非线性扩散方程抽象理论的构建及趋化方程的数学分析
  • 批准号:
    18J21006
  • 财政年份:
    2018
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
個体拡散モデルに関係する非線形拡散方程式の自由境界問題の可解性と解の漸近挙動
与固体扩散模型相关的非线性扩散方程的自由边界问题的可解性和解的渐近行为
  • 批准号:
    14J07046
  • 财政年份:
    2014
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
非線形拡散方程式の解の漸近解析
非线性扩散方程解的渐近分析
  • 批准号:
    14J04276
  • 财政年份:
    2014
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
非線形拡散方程式に現れる非自己相似的な特異性構造の研究
非线性扩散方程中非自相似奇异结构的研究
  • 批准号:
    13J06078
  • 财政年份:
    2013
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
非線形拡散方程式の爆発問題と解の形状
非线性扩散方程爆炸问题及解形状
  • 批准号:
    10J01248
  • 财政年份:
    2010
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
非線形拡散方程式の大域解の分類
非线性扩散方程全局解的分类
  • 批准号:
    10J00309
  • 财政年份:
    2010
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
無限領域における非線形拡散方程式の解が生成する散逸力学系の解明に向けて
阐明无限域中非线性扩散方程的解所产生的耗散动力系统
  • 批准号:
    19654030
  • 财政年份:
    2007
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
非線形拡散方程式における波面のパターン・ダイナミクス
非线性扩散方程中的波前图案动力学
  • 批准号:
    98J04279
  • 财政年份:
    1998
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
離散型非線形拡散方程式に基づく合金組織形成の数値解析
基于离散非线性扩散方程的合金结构形成数值分析
  • 批准号:
    09750730
  • 财政年份:
    1997
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了