Geometrical Models and their Applications

几何模型及其应用

基本信息

  • 批准号:
    07640526
  • 负责人:
  • 金额:
    $ 1.73万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1995
  • 资助国家:
    日本
  • 起止时间:
    1995 至 1997
  • 项目状态:
    已结题

项目摘要

Through a research on Geometrical Models and their Applications, the following results are obtained.1. Relation between motion of curve and integrable evolution equation is explained by an equivalence between Seret-Frenet equation and AKNs eigen-value problem at zero eigenvalue. This remains valid for discrete systems.2. Curve-lengthening equation is introduced and its exact solutions are found which include the Saffman-Taylor solution.3. Level-set formulation for motion of curve is introduced and the generalization of the Saffman-Taylor solution is derived.4. Time evolution of surface in a curved space is fomulated.5.Motion of triangularized surfaces in 3-dimensional space is formulated, and geometrical properties of discrete KdV equation and discrete Nonlinear Schrodinger equation are clarified.6. As a new type of geometrical models, a model specified by an acceleration field is propsed.Curve-shortening equation is discretized so as to retain its geometrical properties.The above results are useful not only in clarifyng mathematical structures of geometrical models but also in applying the models to various fields of physics.
通过对几何模型及其应用的研究,取得了以下成果: 1.曲线运动与可积演化方程之间的关系通过Seret-Frenet方程与零特征值处的AKNs特征值问题之间的等价来解释。这对于离散系统仍然有效。2。引入曲线延长方程并求出其精确解,其中包括Saffman-Taylor解。 3.引入了曲线运动的水平集公式,并推导了Saffman-Taylor解的推广。 4.公式化了曲面在弯曲空间中的时间演化。 5.公式化了三维空间中三角面的运动,阐明了离散KdV方程和离散非线性薛定谔方程的几何性质。 6.作为一种新型的几何模型,提出了由加速度场指定的模型。对缩短曲线方程进行离散化,以保留其几何性质。上述结果不仅有助于阐明几何模型的数学结构,而且有助于将模型应用于物理的各个领域。

项目成果

期刊论文数量(32)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K.Nakayama: "On the Level-Set Formulution of Geonmetrical Models" Journal of Physical Society of Japan. 64. 403-406 (1995)
K.Nakayama:“论几何模型的水平集公式”日本物理学会杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Nakayama: "Reation-Diffusion Systemina Curved Space and the KPZ eguation" Journal of Physical Society of Japan. 64. 1501-1505 (1995)
K.Nakayama:“弯曲空间的反应扩散系统和 KPZ 方程”日本物理学会杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Hisakado and M.Wadati: "Moving Discrete Curve and Geometrical Phase" Phys.Lerr.A214. 252-258 (1996)
M.Hisakado 和 M.Wadati:“移动离散曲线和几何相位”Phys.Lerr.A214。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Hisakado: "Integrable Dynamics of Discrete Surface II" Journal of Physical Society of Japan. 65. 389-393 (1996)
M.Hisakado:“离散表面的积分动力学II”日本物理学会杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Tsurumi: "Motion of Curves Specified by Accelerations" Physics Letters A. 224. 253-263 (1997)
T.Tsurumi:“由加速度指定的曲线运动”《物理快报》A. 224. 253-263 (1997)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

WADATI Miki其他文献

WADATI Miki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('WADATI Miki', 18)}}的其他基金

Exact Analysis of Bose-Einstein Condensates and its Applications
玻色-爱因斯坦凝聚体的精确分析及其应用
  • 批准号:
    18540368
  • 财政年份:
    2006
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonlinear Phenomena and their Controls in Bose-Einstein Condensates
玻色-爱因斯坦凝聚中的非线性现象及其控制
  • 批准号:
    14540373
  • 财政年份:
    2002
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonlinear analysis of Bose-Einstein Condensates
玻色-爱因斯坦凝聚体的非线性分析
  • 批准号:
    11640387
  • 财政年份:
    1999
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies of Nonlinear Waves and Nonlinear Dynamical Systems
非线性波和非线性动力系统的研究
  • 批准号:
    09044065
  • 财政年份:
    1997
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
Theory and Applications of Nonlinear Dynamical Systems
非线性动力系统理论与应用
  • 批准号:
    06044054
  • 财政年份:
    1994
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for international Scientific Research
Random Matrix Theory and its Applications
随机矩阵理论及其应用
  • 批准号:
    04640381
  • 财政年份:
    1992
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Nonlinear Dynamic of Localized Structures
局部结构的非线性动力学
  • 批准号:
    03302018
  • 财政年份:
    1991
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)
Nonlinera Dynamics of Complex Systems
复杂系统的非线性动力学
  • 批准号:
    03044040
  • 财政年份:
    1991
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for international Scientific Research
Exactly Solvable Models and Applications
精确可解模型和应用
  • 批准号:
    01540310
  • 财政年份:
    1989
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Dynamical Phenomena in Plasma Wave Systems
等离子体波系统中的动力学现象
  • 批准号:
    63302062
  • 财政年份:
    1988
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了