Dynamical Phenomena in Plasma Wave Systems

等离子体波系统中的动力学现象

基本信息

  • 批准号:
    63302062
  • 负责人:
  • 金额:
    $ 4.8万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)
  • 财政年份:
    1988
  • 资助国家:
    日本
  • 起止时间:
    1988 至 1989
  • 项目状态:
    已结题

项目摘要

1. Properties and roles of solitons in the nonlinear development of unstable waves were clarified for ion beam and electron beam plasmas. Formation of solitons works to stabilize the instability, which was confirmed by experiments.2. As a new mechanism of particle acceleration, resonant acceleration by large amplitu magneto-sonic waves was proposed. Rapid particle acceleration in solar flares is explained by this mechanism.3. Nonlinear Alfven waves propagating along magnetic flux was investigated by using the derivative nonlinear Schrodinger equation. Relations between initial conditions and numbers of emerging solitons were obtained.4. Using double plasma device, chaos phenomena such as period doubling of pump waves and higher harmonics generation of electron plasma waves were observed.5. Considering the nonlinear Schrodinger equation with a dissipative term, properties of multi-soliton states under the perturbations were clarified.6. Employing vortex filament approximation for drift waves, dynamical and statistical properties of vortex filaments were investigated. Diffusion constant for vortices was analytically obtained.7. A general theory to construct new link polynomials from soliton theory was proposed. Link polynomials give a systematic method to classify knots and links.8. Propagations and excitations of drift waves in non-uniform magnetized plasmsas were investigated. Drift pulse waves, which have sbliton properties, were observed.9. Reflections and transmissions of ion sound wave solitons were studied. Techniques for the creation of large amplitude ion waves were developed.10. To the particle under cyclotron motion, a static electric wave perpendicular to the magnetic field is applied. Formation of a thin stochastic layer in phase space was shown numerically.
1.阐明了离子束和电子束等离子体中孤子的性质及其在不稳定波非线性发展中的作用。实验证实了孤子的形成对稳定不稳定性的作用.提出了一种新的粒子加速机制--大振幅磁声波共振加速。这一机制解释了太阳耀斑中粒子的快速加速现象.利用微分非线性薛定谔方程研究了非线性Alfven波沿沿着磁通传播的情况。得到了初始条件与孤子数之间的关系.利用双等离子体装置,研究了泵浦波的倍频和电子等离子体波的高次谐波产生等混沌现象.考虑带耗散项的非线性薛定谔方程,阐明了扰动下多孤子态的性质.采用漂移波的涡丝近似,研究了涡丝的动力学和统计特性。通过分析得到了涡的扩散常数.提出了利用孤子理论构造新的链接多项式的一般理论。链接多项式给出了一个系统的方法来分类节点和链接.本文研究了非均匀磁化等离子体中漂移波的激发和激发。研究了具有自旋特性的漂移脉冲波.研究了离子声波孤立子的反射和传输。开发了产生大振幅离子波的技术。对回旋运动的粒子施加垂直于磁场的静电波。数值模拟了相空间中薄随机层的形成过程。

项目成果

期刊论文数量(127)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Ohsawa: "Prompt Acceleration of Ions to Pelativistic Energies by a Large-Amplitude Magnetosonic Wave" Astrophys.J.Supplement,in Press.
Y.Ohsawa:“通过大振幅磁声波将离子迅速加速到相对论能量”,《Astrophys.J.Suplement》,出版中。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Nishihara: "Short-Wavelength Lasers" Springer-Verlag,Proceedings in Physics 30, 7 (1988)
K.Nishihara:“短波长激光器”Springer-Verlag,《物理学报》30, 7 (1988)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Kasuya: "Proc.X1X Int.Cont.on Phenomena in Ionized Gases,Belgrade(1989)pp.930-931" 2 (1989)
T.Kasuya:“Proc.X1X Int.Cont.on Phenomena in Ionized Gases,贝尔格莱德 (1989)pp.930-931”2 (1989)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Hase et al.: "Soliton Solutions of the Mel'nikov Equations" J.Phys.Soc.Jpn. 58 2713-2720.
Y.Hase 等人:“Melnikov 方程的孤子解”J.Phys.Soc.Jpn。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Kaneko and T.Konishi: "Is the Diffusion Normal in Hamiltonian Dynamical Systems with Many Degrees of Freedom" Phys.Rev.A40 6130-6133(1989).
K.Kaneko 和 T.Konishi:“多自由度哈密顿动力系统中的扩散正常吗”Phys.Rev.A40 6130-6133(1989)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

WADATI Miki其他文献

WADATI Miki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('WADATI Miki', 18)}}的其他基金

Exact Analysis of Bose-Einstein Condensates and its Applications
玻色-爱因斯坦凝聚体的精确分析及其应用
  • 批准号:
    18540368
  • 财政年份:
    2006
  • 资助金额:
    $ 4.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonlinear Phenomena and their Controls in Bose-Einstein Condensates
玻色-爱因斯坦凝聚中的非线性现象及其控制
  • 批准号:
    14540373
  • 财政年份:
    2002
  • 资助金额:
    $ 4.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonlinear analysis of Bose-Einstein Condensates
玻色-爱因斯坦凝聚体的非线性分析
  • 批准号:
    11640387
  • 财政年份:
    1999
  • 资助金额:
    $ 4.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies of Nonlinear Waves and Nonlinear Dynamical Systems
非线性波和非线性动力系统的研究
  • 批准号:
    09044065
  • 财政年份:
    1997
  • 资助金额:
    $ 4.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
Geometrical Models and their Applications
几何模型及其应用
  • 批准号:
    07640526
  • 财政年份:
    1995
  • 资助金额:
    $ 4.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theory and Applications of Nonlinear Dynamical Systems
非线性动力系统理论与应用
  • 批准号:
    06044054
  • 财政年份:
    1994
  • 资助金额:
    $ 4.8万
  • 项目类别:
    Grant-in-Aid for international Scientific Research
Random Matrix Theory and its Applications
随机矩阵理论及其应用
  • 批准号:
    04640381
  • 财政年份:
    1992
  • 资助金额:
    $ 4.8万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Nonlinear Dynamic of Localized Structures
局部结构的非线性动力学
  • 批准号:
    03302018
  • 财政年份:
    1991
  • 资助金额:
    $ 4.8万
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)
Nonlinera Dynamics of Complex Systems
复杂系统的非线性动力学
  • 批准号:
    03044040
  • 财政年份:
    1991
  • 资助金额:
    $ 4.8万
  • 项目类别:
    Grant-in-Aid for international Scientific Research
Exactly Solvable Models and Applications
精确可解模型和应用
  • 批准号:
    01540310
  • 财政年份:
    1989
  • 资助金额:
    $ 4.8万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似国自然基金

JOSEPHSONJUNCTION的动力学与紊动(CHAOS)现象
  • 批准号:
    18670411
  • 批准年份:
    1986
  • 资助金额:
    0.55 万元
  • 项目类别:
    面上项目

相似海外基金

Quantum Dynamics and Quantum Chaos
量子动力学和量子混沌
  • 批准号:
    2894416
  • 财政年份:
    2023
  • 资助金额:
    $ 4.8万
  • 项目类别:
    Studentship
Coherent Structure, Chaos, and Turbulence in Fluid Mechanics
流体力学中的相干结构、混沌和湍流
  • 批准号:
    2348453
  • 财政年份:
    2023
  • 资助金额:
    $ 4.8万
  • 项目类别:
    Standard Grant
Investigation of synchronized phenomena and its application to chaos control in a laboratory plasma
同步现象的研究及其在实验室等离子体混沌控制中的应用
  • 批准号:
    23K03355
  • 财政年份:
    2023
  • 资助金额:
    $ 4.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Chaos Creator
混沌创造者
  • 批准号:
    10067450
  • 财政年份:
    2023
  • 资助金额:
    $ 4.8万
  • 项目类别:
    Collaborative R&D
CloudEnergyBalance: Simple climate models to quantify impact of large-scale cloudiness & deterministic chaos on climatic variability & tipping points
CloudEnergyBalance:用于量化大规模多云影响的简单气候模型
  • 批准号:
    EP/Y01653X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 4.8万
  • 项目类别:
    Fellowship
Conference: Random matrices from quantum chaos to the Riemann zeta function.
会议:从量子混沌到黎曼 zeta 函数的随机矩阵。
  • 批准号:
    2306332
  • 财政年份:
    2023
  • 资助金额:
    $ 4.8万
  • 项目类别:
    Standard Grant
Fast Chaos Detection through Data-Driven Approach
通过数据驱动方法进行快速混沌检测
  • 批准号:
    23K16963
  • 财政年份:
    2023
  • 资助金额:
    $ 4.8万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Wasserstein-Type Gradient Flow via Propagation by Chaos for a Continuous Formulation of a Shallow Neural Network
通过混沌传播的 Wasserstein 型梯度流用于连续制定浅层神经网络
  • 批准号:
    2879236
  • 财政年份:
    2023
  • 资助金额:
    $ 4.8万
  • 项目类别:
    Studentship
Development of an optimization method using chaos for spin devices
开发利用混沌的自旋器件优化方法
  • 批准号:
    23KJ0331
  • 财政年份:
    2023
  • 资助金额:
    $ 4.8万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Moments of character sums and of the Riemann zeta function via multiplicative chaos
乘性混沌的特征和矩和黎曼 zeta 函数矩
  • 批准号:
    EP/V055755/1
  • 财政年份:
    2022
  • 资助金额:
    $ 4.8万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了