Nonlinear Phenomena and their Controls in Bose-Einstein Condensates

玻色-爱因斯坦凝聚中的非线性现象及其控制

基本信息

  • 批准号:
    14540373
  • 负责人:
  • 金额:
    $ 1.92万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2005
  • 项目状态:
    已结题

项目摘要

To clarify the static and dynamic properties of the Bose-Einstein condensates of ultra-cold neutral bosonic atoms, the following subjects were investigated.1. Quantum delta-function gasesFor one-dimensional quantum integrable particle systems, quasi-momentum distribution and excitation energy spectrum are described by Lieb-Liniger (LL) integral equation and Yang-Yang (YY) integral equation, respectively. Those integral equations are usually solved numerically, but the analytic work are few. In particular, the weak coupling case is known to be a hard problem. We apply the power-series expansion method for analysis of spin-1/2 fermion system where two kinds of fermions (spin up and spin down) interact through the attractive delta-function potential. In the strong coupling region, spin-pair states are shown to exist. This implies the occurrence of BCS state in ultra-cold gases.2. Matter-wave propagations in F=1 spinor BEC condensate.In optical trap, the condensates with internal degrees of freedom are realized. It was found that, when the magnitudes of inter-atomic potential and spin-exchange interaction are same, three-component Gross-Pitaevskii (GP) equation is integrable. Through the inverse scattering method, N-soliton solutions are obtained. For the attractive case, bright solitons exist and those are classified into polar soliton and ferromagnetic soliton. For the repulsive case, the similar results hold (in preparation). For general two coupling constants, matter-wave propagations are investigated. From the analysis of plane-wave solutions, we can show the existence of polar soliton and ferromagnetic soliton.Since this year is the final year of the project, we extended analyses to the subjects such as soliton equations in non-commutative space-time, transports in one-dimensional exclusion processes and, geometric phases and quantum entanglements of two spins in a magnetic field.
为了阐明超冷中性玻色子原子的玻色-爱因斯坦凝聚体的静态和动态性质,研究了以下课题:1。量子δ函数气体对于一维量子可积粒子系统,准动量分布和激发能谱分别用Lieb-Liniger (LL)积分方程和Yang-Yang (YY)积分方程描述。这些积分方程通常用数值方法求解,但解析的工作很少。特别是,弱耦合的情况被认为是一个难题。我们应用幂级数展开方法分析了自旋为1/2的费米子系统,其中两种费米子(自旋向上和自旋向下)通过吸引函数势相互作用。在强耦合区,存在自旋对态。这意味着在超冷气体中会出现BCS状态。F=1旋量BEC凝聚体中的物质波传播。在光阱中,实现了具有内自由度的凝聚体。发现当原子间势和自旋交换相互作用的大小相同时,三分量Gross-Pitaevskii (GP)方程是可积的。通过逆散射法,得到了n孤子解。在有吸引力的情况下,存在亮孤子,并将其分为极孤子和铁磁孤子。对于排斥情况,类似的结果(在准备中)成立。对于一般的两个耦合常数,研究了物质波的传播。通过对平面波解的分析,证明了极孤子和铁磁孤子的存在性。由于今年是项目的最后一年,我们将分析扩展到非交换时空中的孤子方程、一维不相容过程中的输运、磁场中两个自旋的几何相位和量子纠缠等主题。

项目成果

期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exact Soliton Solutions of Spinor Base-Einstein Condensates
旋量基-爱因斯坦凝聚态的精确孤子解
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.Wadati et al.;J.Ieda et al.;M.Wadati et al.;J.Ieda et al.
  • 通讯作者:
    J.Ieda et al.
M.Wadati: "One-dimensional hard-core boson gas"Chaos, Solitons & Fractals. 14. 23-28 (2002)
M.Wadati:“一维硬核玻色子气体”混沌、孤子
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Exact analysis of soliton dynamics in spinor Bose-Einstein condensates.
  • DOI:
    10.1103/physrevlett.93.194102
  • 发表时间:
    2004-04
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    J. Ieda;T. Miyakawa;M. Wadati
  • 通讯作者:
    J. Ieda;T. Miyakawa;M. Wadati
N.Uesugi: "Superfluid-Mott insulator transition of spinor base gases with external magnetic fields"Journal of Physical Society of Japan. 72. 1041-1048 (2003)
N.Uesugi:“自旋基气体与外部磁场的超流体-莫特绝缘体转变”日本物理学会杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Tsurumi: "Free expansion of a Bose-Einstein condensate"Journal of Physical Society of Japan. 71. 1044-1051 (2002)
T.Tsurumi:“玻色-爱因斯坦凝聚体的自由膨胀”日本物理学会杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

WADATI Miki其他文献

WADATI Miki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('WADATI Miki', 18)}}的其他基金

Exact Analysis of Bose-Einstein Condensates and its Applications
玻色-爱因斯坦凝聚体的精确分析及其应用
  • 批准号:
    18540368
  • 财政年份:
    2006
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonlinear analysis of Bose-Einstein Condensates
玻色-爱因斯坦凝聚体的非线性分析
  • 批准号:
    11640387
  • 财政年份:
    1999
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies of Nonlinear Waves and Nonlinear Dynamical Systems
非线性波和非线性动力系统的研究
  • 批准号:
    09044065
  • 财政年份:
    1997
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
Geometrical Models and their Applications
几何模型及其应用
  • 批准号:
    07640526
  • 财政年份:
    1995
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theory and Applications of Nonlinear Dynamical Systems
非线性动力系统理论与应用
  • 批准号:
    06044054
  • 财政年份:
    1994
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for international Scientific Research
Random Matrix Theory and its Applications
随机矩阵理论及其应用
  • 批准号:
    04640381
  • 财政年份:
    1992
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Nonlinear Dynamic of Localized Structures
局部结构的非线性动力学
  • 批准号:
    03302018
  • 财政年份:
    1991
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)
Nonlinera Dynamics of Complex Systems
复杂系统的非线性动力学
  • 批准号:
    03044040
  • 财政年份:
    1991
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for international Scientific Research
Exactly Solvable Models and Applications
精确可解模型和应用
  • 批准号:
    01540310
  • 财政年份:
    1989
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Dynamical Phenomena in Plasma Wave Systems
等离子体波系统中的动力学现象
  • 批准号:
    63302062
  • 财政年份:
    1988
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)

相似海外基金

Single impurity in a dipolar Bose-Einstein condensate
偶极玻色-爱因斯坦凝聚体中的单一杂质
  • 批准号:
    2609873
  • 财政年份:
    2021
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Studentship
Mathematical physics of one-dimensional Bose-Einstein condensate control
一维玻色-爱因斯坦凝聚态控制的数学物理
  • 批准号:
    21K03409
  • 财政年份:
    2021
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Single Impurity in a Dipolar Bose-Einstein Condensate
偶极玻色-爱因斯坦凝聚体中的单一杂质
  • 批准号:
    EP/T019913/1
  • 财政年份:
    2020
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Research Grant
SINGLE IMPURITY IN A DIPOLAR BOSE-EINSTEIN CONDENSATE
偶极玻色-爱因斯坦凝聚态中的单一杂质
  • 批准号:
    2445069
  • 财政年份:
    2020
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Studentship
SINGLE IMPURITY IN A DIPOLAR BOSE-EINSTEIN CONDENSATE
偶极玻色-爱因斯坦凝聚态中的单一杂质
  • 批准号:
    2895362
  • 财政年份:
    2020
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Studentship
Analysis for inhomogeneous Bose-Einstein condensate system including quantum fluctuation of zero-mode
包括零模量子涨落的非均匀玻色-爱因斯坦凝聚体系分析
  • 批准号:
    19K14619
  • 财政年份:
    2019
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Towards the study of topological defects in 87-Rubidium Bose-Einstein condensate
87-铷玻色-爱因斯坦凝聚体拓扑缺陷的研究
  • 批准号:
    2126858
  • 财政年份:
    2017
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Studentship
Generation of a soliton in a gaseous Bose-EInstein condensate and its application for measuring external fields
气态玻色-爱因斯坦凝聚中孤子的产生及其在测量外场中的应用
  • 批准号:
    15K05229
  • 财政年份:
    2015
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Observation and control of dynamics under electric dipole-dipole interaction in a Bose Einstein condensate
玻色爱因斯坦凝聚态电偶极-偶极相互作用下动力学的观测与控制
  • 批准号:
    15K17730
  • 财政年份:
    2015
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Bose Einstein Condensate and random initial data
Bose Einstein Condensate 和随机初始数据
  • 批准号:
    404762-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了