Theory and Applications of Nonlinear Dynamical Systems
非线性动力系统理论与应用
基本信息
- 批准号:06044054
- 负责人:
- 金额:$ 5.38万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for international Scientific Research
- 财政年份:1994
- 资助国家:日本
- 起止时间:1994 至 1995
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Theory and Applications of Nonlinear Dynamical SystemsIn this project.a main theme is the analysis of nonlinear dynamical systems with large degrees of freedom which appear in various fields of physics. The followings are summary of the results.1. Quantum integrable systems with long-range interactionsWe have developped the quantum inverse scattering method for onedimensional quantum particle systems with long-range interactions. Integrabilities of the Calogero-Moser model and the Sutherland model are proved. Those models are extended so as to include internal degrees of freedom (spins). The Dunkl operator approach and the exchange operator approach are also clarified.2. Geometrical modelsThe purposes are two folds. One is the extension of the soliton systems to higher-dimensional ones and the other is a general setting for descriptions of geometrical objects in physics. We have developped the level-set formulation of the surfaces in arbitrary space-dimension. Special solutions of the curve-lengthening equation which generalize the Saffman-Taylor finger solution are found.3. Discrete dynamical modelsThe geometrical models are extended into the discrete curves and the discrete surfaces. The relations with descrete integrable systems (the discrete Modified K-dV hierarchy) are found.4. Two-dimensional integrable systemsThe Davey-Stewartson equation which is considered to be a two-dimensional extension of the nonlinear Schrodinger equation is studied numerically. The stability of dromions and the role of the mean flows are clarified.5. Random KnottingAs a model for polymers, topological configurations of random walks are investigated. Probability of a knot K as a function of the length N.P (K.N).is determined by numerical experiments. The proposed formula for B (K.N) agrees well with the numerical results.
非线性动力系统的理论与应用在这个项目中,一个主要的主题是分析在物理学的各个领域中出现的具有大自由度的非线性动力系统。以下是结果的总结。具有长程相互作用的量子可积系统我们发展了具有长程相互作用的一维量子粒子系统的量子逆散射方法。证明了Calogero-Moser模型和Sutherland模型的可积性。这些模型进行了扩展,以包括内部自由度(自旋)。对Dunkl算子方法和交换算子方法也进行了阐述.几何模型的目的有两个方面。一个是孤子系统向高维系统的扩展,另一个是物理学中描述几何对象的一般设置。我们建立了任意空间维曲面的水平集公式。得到了曲线延长方程的特解,推广了Saffman-Taylor指形解.离散动力学模型将几何模型推广到离散曲线和离散曲面。建立了与离散可积系统(离散修正K-dV族)的关系.二维可积系统数值研究了Davey-Stewartson方程,它被认为是非线性Schrodinger方程的二维推广。阐明了dromion的稳定性和平均流的作用.作为聚合物的一种模型,研究了无规行走的拓扑构型。通过数值实验确定了纽结概率K与长度N.P(K.N)的函数关系。所提出的B(K.N)计算公式与数值计算结果吻合较好。
项目成果
期刊论文数量(92)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Hisakado: "Motion of Discrete Surfaces" Journal of Physical Society of Japan. 64. 2252-2256 (1995)
M.Hisakado:“离散表面的运动”日本物理学会杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Hikami: "Yangian Symmetry and Virasoro character in lattice spin system with long-range interactions" Nuclear Physics B. 441. 530-548 (1995)
K.Hikami:“具有长程相互作用的晶格自旋系统中的杨对称性和 Virasoro 特征”核物理 B. 441. 530-548 (1995)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Nakayama: "Fluctuation phenomena,Disorder and Nonlinearity ed.by A.R.Bishop et al." World Scientific Publishing, 7 (1995)
K.Nakayama:“涨落现象、无序和非线性,A.R.Bishop 等人编着。”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Nakayama: "Reaction diffasion system in a curved space and the KPZ equation" Journal of Physical Society of Japan. 64. 1501-1505 (1995)
K.Nakayama:“弯曲空间中的反应扩散系统和 KPZ 方程”日本物理学会杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Shiroishi: "Tetrahedrol Zamolodchikov algebra related to the six-vertey free-fermion model and a new solution to the Yang-Baxter equation" Journal of Physical Society of Japan. 64. 4598-4608 (1995)
M.Shiroishi:“与六顶点自由费米子模型相关的四面体扎莫洛奇科夫代数和杨-巴克斯特方程的新解”《日本物理学会杂志》。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WADATI Miki其他文献
WADATI Miki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WADATI Miki', 18)}}的其他基金
Exact Analysis of Bose-Einstein Condensates and its Applications
玻色-爱因斯坦凝聚体的精确分析及其应用
- 批准号:
18540368 - 财政年份:2006
- 资助金额:
$ 5.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonlinear Phenomena and their Controls in Bose-Einstein Condensates
玻色-爱因斯坦凝聚中的非线性现象及其控制
- 批准号:
14540373 - 财政年份:2002
- 资助金额:
$ 5.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonlinear analysis of Bose-Einstein Condensates
玻色-爱因斯坦凝聚体的非线性分析
- 批准号:
11640387 - 财政年份:1999
- 资助金额:
$ 5.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies of Nonlinear Waves and Nonlinear Dynamical Systems
非线性波和非线性动力系统的研究
- 批准号:
09044065 - 财政年份:1997
- 资助金额:
$ 5.38万 - 项目类别:
Grant-in-Aid for Scientific Research (B).
Geometrical Models and their Applications
几何模型及其应用
- 批准号:
07640526 - 财政年份:1995
- 资助金额:
$ 5.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Random Matrix Theory and its Applications
随机矩阵理论及其应用
- 批准号:
04640381 - 财政年份:1992
- 资助金额:
$ 5.38万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Nonlinear Dynamic of Localized Structures
局部结构的非线性动力学
- 批准号:
03302018 - 财政年份:1991
- 资助金额:
$ 5.38万 - 项目类别:
Grant-in-Aid for Co-operative Research (A)
Nonlinera Dynamics of Complex Systems
复杂系统的非线性动力学
- 批准号:
03044040 - 财政年份:1991
- 资助金额:
$ 5.38万 - 项目类别:
Grant-in-Aid for international Scientific Research
Exactly Solvable Models and Applications
精确可解模型和应用
- 批准号:
01540310 - 财政年份:1989
- 资助金额:
$ 5.38万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Dynamical Phenomena in Plasma Wave Systems
等离子体波系统中的动力学现象
- 批准号:
63302062 - 财政年份:1988
- 资助金额:
$ 5.38万 - 项目类别:
Grant-in-Aid for Co-operative Research (A)
相似海外基金
Research on Defects in Supersymmetric Theories via Relation with Integrable System
通过与可积系统的关系研究超对称理论的缺陷
- 批准号:
20K03935 - 财政年份:2020
- 资助金额:
$ 5.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Bosonization of quantum W superalgebra and its application to integrable system
量子W超代数的玻色化及其在可积系统中的应用
- 批准号:
19K03509 - 财政年份:2019
- 资助金额:
$ 5.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Application of Abelian function theory to Integrable system
阿贝尔函数理论在可积系统中的应用
- 批准号:
16K05187 - 财政年份:2016
- 资助金额:
$ 5.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
integrable system and moduli theory of derived category
可积系统与派生范畴模论
- 批准号:
26400043 - 财政年份:2014
- 资助金额:
$ 5.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
M-brain and quantum integrable system
M脑和量子可积系统
- 批准号:
24540265 - 财政年份:2012
- 资助金额:
$ 5.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of non-integrable system by the eigenvalue problem of the Liouvillian in classical mechanics
经典力学中刘维尔特征值问题分析不可积系统
- 批准号:
23654136 - 财政年份:2011
- 资助金额:
$ 5.38万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Construction of ultradiscrete integrable system
超离散可积系统的构建
- 批准号:
23740091 - 财政年份:2011
- 资助金额:
$ 5.38万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Integrable system and middle convolution
可积系统和中间卷积
- 批准号:
22740107 - 财政年份:2010
- 资助金额:
$ 5.38万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
A construction of surfaces in spaces of constant curvature via integrable system method
常曲率空间中曲面的可积系统法构造
- 批准号:
20740045 - 财政年份:2008
- 资助金额:
$ 5.38万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Research for new algorithms by integrable system approach
可积系统方法研究新算法
- 批准号:
20740064 - 财政年份:2008
- 资助金额:
$ 5.38万 - 项目类别:
Grant-in-Aid for Young Scientists (B)














{{item.name}}会员




