Nonlinera Dynamics of Complex Systems

复杂系统的非线性动力学

基本信息

  • 批准号:
    03044040
  • 负责人:
  • 金额:
    $ 3.52万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for international Scientific Research
  • 财政年份:
    1991
  • 资助国家:
    日本
  • 起止时间:
    1991 至 1992
  • 项目状态:
    已结题

项目摘要

1. Soliton theory is extended to include effects of instability in nonlinear systems. In particular, amplitude modulations are considered. We obtain a nonlinear evolution equation where time t and space x are exchanged in the nonlinear Schrodinger equation. We call it unstable nonlinear Schorodinger (UNLS) equation. The UNLS equation is a completely integrable system and is applicable to physical systems such as Rayleigh-Taylor problem and electron-beam plasma.2. The UNLS equation is ill-posed since the growth rate is not bounded for small wavenumber kappa. By applying reductive perturbation theory, we can remedy this difficulty and obtain a new amplitude equation. The new equation has an advantage that it encompass chaos phenomena and soliton phenomena.3. We examine the effect of inhomogeneity on the nonlinear wave propagations. Using a one-dimensional nonlinear lattice with non-uniform mass distribution, we consider two cases ; slowly varying waves and modulations of carrier waves. F … More urther, we extend the theory into two-dimensional lattice and obtain the Kadomtsev-Petviash vili equation with inhomogeneous effects. We predict interesting phenomena such as deformation of solitons, and nonlinear reflections and transmissions.4. In the theory of random matrix ensembles, it is assumed that ensemble-averaged quantities describe the properties of almost all individual members of the ensembles (the ergodicity of random matrix ensembles). The level densities of random matrix ensembles related to classical orthogonal polynomials are proved to be ergodec.5. A coupled nonlinear schrodinger equation is studied. The equation describes non-linear modulations of two monochromatic waves whose group velocities are almost equal. As a special case, optical solitons for two linearly polarized waves are obtained.6. We study a class of models such that a motion of curves is determined by the curvature and torsion. The geometrical approach is shown to be equivalent to the AKNS formalism with zero eigenvalue.7. Topological properties of random walks as a model of polymers are studied. Less
1.孤子理论扩展到包括非线性系统的不稳定性的影响。特别是,振幅调制被认为是。在非线性薛定谔方程中,我们得到了一个时间t和空间x互换的非线性发展方程.我们称之为不稳定的非线性Schorodinger(UNLS)方程。UNLS方程是一个完全可积的系统,适用于Rayleigh-Taylor问题和电子束等离子体等物理系统. UNLS方程是不适定的,因为增长率对于小波数Kappa是没有界的。应用约化微扰理论,我们可以克服这个困难,得到一个新的振幅方程。新方程的优点在于它包含了混沌现象和孤子现象.我们研究了非均匀性对非线性波传播的影响。使用一维非线性晶格与非均匀质量分布,我们考虑两种情况下,慢变波和调制的载波。F ...更多信息 进一步将理论推广到二维格点,得到了具有非齐次效应的Kadomtsev-Petviashvili方程。我们预测了一些有趣的现象,如孤子的变形、非线性反射和透射.在随机矩阵系综理论中,假设系综平均量描述了系综中几乎所有个体成员的性质(随机矩阵系综的遍历性)。证明了与经典正交多项式相关的随机矩阵系综的能级密度是遍历的。研究了耦合非线性薛定谔方程。该方程描述了群速度几乎相等的两个单色波的非线性调制。作为特例,得到了两个线偏振波的光孤子.研究了一类曲线的运动由曲率和挠率决定的模型。几何方法被证明是等价的AKNS形式主义与零特征值。研究了作为聚合物模型的无规游动的拓扑性质。少

项目成果

期刊论文数量(52)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.DEGUCHI: "Colored Braid Matrices from Infinite Dimension-al Representations of Ug(g)" Mod.Phys.A. 7. 767-779 (1992)
T.DEGUCHI:“Ug(g) 的无限维表示的彩色编织矩阵” Mod.Phys.A。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
J.VILLARROEL: "On the Method of Solution to the 2+1 Toda Eguation" Phys.Lett.A. 163. 293-296 (1992)
J.VILLARROEL:“关于 2 1 Toda 方程的求解方法”Phys.Lett.A。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
J.Villarroel: "On the Method of Solution to the 2+1 Toda Equation" Phys.Lett. A. 163. 293-296 (1992)
J.Villarroel:“关于 2 1 Toda 方程的求解方法”Phys.Lett。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K. Hikami: "Integrability of Calogero-Moser Spin Systems" J.Phys.Soc.Jpn.62. (1993)
K. Hikami:“Calogero-Moser 自旋系统的可积分性”J.Phys.Soc.Jpn.62。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Ablowitz: Cambridge University Press. Solitons, Nonlinear Evolution Equations and Inverse Scattering, 1-500 (1991)
M.Ablowitz:剑桥大学出版社。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

WADATI Miki其他文献

WADATI Miki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('WADATI Miki', 18)}}的其他基金

Exact Analysis of Bose-Einstein Condensates and its Applications
玻色-爱因斯坦凝聚体的精确分析及其应用
  • 批准号:
    18540368
  • 财政年份:
    2006
  • 资助金额:
    $ 3.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonlinear Phenomena and their Controls in Bose-Einstein Condensates
玻色-爱因斯坦凝聚中的非线性现象及其控制
  • 批准号:
    14540373
  • 财政年份:
    2002
  • 资助金额:
    $ 3.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonlinear analysis of Bose-Einstein Condensates
玻色-爱因斯坦凝聚体的非线性分析
  • 批准号:
    11640387
  • 财政年份:
    1999
  • 资助金额:
    $ 3.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies of Nonlinear Waves and Nonlinear Dynamical Systems
非线性波和非线性动力系统的研究
  • 批准号:
    09044065
  • 财政年份:
    1997
  • 资助金额:
    $ 3.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
Geometrical Models and their Applications
几何模型及其应用
  • 批准号:
    07640526
  • 财政年份:
    1995
  • 资助金额:
    $ 3.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theory and Applications of Nonlinear Dynamical Systems
非线性动力系统理论与应用
  • 批准号:
    06044054
  • 财政年份:
    1994
  • 资助金额:
    $ 3.52万
  • 项目类别:
    Grant-in-Aid for international Scientific Research
Random Matrix Theory and its Applications
随机矩阵理论及其应用
  • 批准号:
    04640381
  • 财政年份:
    1992
  • 资助金额:
    $ 3.52万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Nonlinear Dynamic of Localized Structures
局部结构的非线性动力学
  • 批准号:
    03302018
  • 财政年份:
    1991
  • 资助金额:
    $ 3.52万
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)
Exactly Solvable Models and Applications
精确可解模型和应用
  • 批准号:
    01540310
  • 财政年份:
    1989
  • 资助金额:
    $ 3.52万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Dynamical Phenomena in Plasma Wave Systems
等离子体波系统中的动力学现象
  • 批准号:
    63302062
  • 财政年份:
    1988
  • 资助金额:
    $ 3.52万
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)

相似海外基金

Nonlinear Waves in Lattices and Metamaterials
晶格和超材料中的非线性波
  • 批准号:
    2204880
  • 财政年份:
    2022
  • 资助金额:
    $ 3.52万
  • 项目类别:
    Standard Grant
Universality in Nonlinear Waves and Related Topics
非线性波的普遍性及相关主题
  • 批准号:
    2204896
  • 财政年份:
    2022
  • 资助金额:
    $ 3.52万
  • 项目类别:
    Continuing Grant
Asymptotic analysis for partial differential equations of nonlinear waves with dissipation and dispersion
具有耗散和色散的非线性波偏微分方程的渐近分析
  • 批准号:
    22K13939
  • 财政年份:
    2022
  • 资助金额:
    $ 3.52万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Dynamics and Stability of Nonlinear Waves
非线性波的动力学和稳定性
  • 批准号:
    2204788
  • 财政年份:
    2021
  • 资助金额:
    $ 3.52万
  • 项目类别:
    Continuing Grant
Collaborative Research: Stability and Instability of Periodically Stationary Nonlinear Waves with Applications to Fiber Lasers
合作研究:周期性平稳非线性波的稳定性和不稳定性及其在光纤激光器中的应用
  • 批准号:
    2106157
  • 财政年份:
    2021
  • 资助金额:
    $ 3.52万
  • 项目类别:
    Standard Grant
Novel Challenges in Nonlinear Waves and Integrable Systems
非线性波和可积系统的新挑战
  • 批准号:
    2106488
  • 财政年份:
    2021
  • 资助金额:
    $ 3.52万
  • 项目类别:
    Standard Grant
Nonlinear waves in astrophysical discs
天体物理圆盘中的非线性波
  • 批准号:
    2603337
  • 财政年份:
    2021
  • 资助金额:
    $ 3.52万
  • 项目类别:
    Studentship
Collaborative Research: Stability and Instability of Periodically Stationary Nonlinear Waves with Applications to Fiber Lasers
合作研究:周期性平稳非线性波的稳定性和不稳定性及其在光纤激光器中的应用
  • 批准号:
    2106203
  • 财政年份:
    2021
  • 资助金额:
    $ 3.52万
  • 项目类别:
    Standard Grant
Mathematics of Revealing Inaccessible Objects Using Linear and Nonlinear Waves
使用线性和非线性波揭示难以接近的物体的数学
  • 批准号:
    2109199
  • 财政年份:
    2021
  • 资助金额:
    $ 3.52万
  • 项目类别:
    Standard Grant
Spectral Theory and Nonlinear Waves
谱理论和非线性波
  • 批准号:
    2054841
  • 财政年份:
    2021
  • 资助金额:
    $ 3.52万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了