Nonlinear analysis of Bose-Einstein Condensates
玻色-爱因斯坦凝聚体的非线性分析
基本信息
- 批准号:11640387
- 负责人:
- 金额:$ 1.66万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1.In the case that the effective interaction between atoms is attractive, the condensate becomes unstable when the number of atoms exceeds some value (critical particle number). Using a new inequality, we discussed rigorously the stability condition of Gross-Pitaevskii equation (Nonlinear Schroedinger equation).2.We analyzed the Bose-Einstein condensate under a troidal trap. In Particular, we clarified the ground state properties the ground state energy decreases and the distribution of atoms is shifted to the central axis.3.For the dispersion relation E〜k^a. we investigated the condition of the condensation. By using the WKB method, we found the relation between the dispersion relation and the power-law of the magnetic trap V〜r^p. When the potential decreases rapidly around r=0, we pointed out that the Bose-Einstein condensation takes place even in one dimension. Also, we showed that the values of a and p change drastically the properties of the transition.4.We analyzed the free tall of the condensate including the atomic interactions. Interference patterns of atomic waves reflect the interactions, which are observable in experiments.5.We developed a statistical mechanics of one-dimensional delta function gas. By the peturbational method, we derived the integral equation of thermal Bethe ansatz equation. This is a fisrt direct proof of the Bethe anasatz.
1.在原子间的有效相互作用是吸引的情况下,当原子数超过某个值(临界粒子数)时,冷凝物就变得不稳定。利用一个新的不等式,我们严格地讨论了Gross-Pitaevskii方程(非线性薛定谔方程)的稳定性条件。我们在一个三线阱下分析了玻色-爱因斯坦凝聚体。特别地,我们澄清了基态性质,基态能量降低,原子分布向中轴偏移。对于色散关系E ~ k^a。我们研究了冷凝的条件。利用WKB方法,我们发现了色散关系与磁阱V ~ r^p幂律之间的关系。当势在r=0附近迅速减小时,我们指出即使在一维中也会发生玻色-爱因斯坦凝聚。此外,我们还证明了a和p的值会极大地改变相变的性质。我们分析了包括原子相互作用在内的冷凝物的自由高度。原子波的干涉图样反映了相互作用,这在实验中是可以观察到的。我们发展了一维函数气体的统计力学。用微动法推导了热贝特安萨兹方程的积分方程。这是贝特人的第一个直接证明。
项目成果
期刊论文数量(44)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.Morise et al.: "Dynamics of a wave function for the attractive nonlinear Schrodinger equation under isotropic harmonic confinement potential"Journal of Physical Society of Japan. 70. 3529-3534 (2001)
H.Morise 等人:“各向同性谐波约束势下有吸引力的非线性薛定谔方程的波函数动力学”日本物理学会杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Fujii et al.: "Asymptotic form of the two-point correlation function of the XXZ spin chain"Journal of Physics A. 34. 2657-2657 (2001)
Y.Fujii 等:“XXZ 自旋链的两点相关函数的渐近形式”Journal of Chemistry A. 34. 2657-2657 (2001)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
G.Kato: "Graphical representation of the partition function of a one-dimensional delta-function Bose-gas"Journal of Mathematical Physics. 42. 4883-4893 (2001)
G.Kato:“一维 δ 函数玻色气体的配分函数的图形表示”数学物理杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Fan et al.: "Quantum cloning mechanics of a d-level system"Physical Review A. 64(09). 064301-1-064301-3 (2001)
H.Fan 等人:“d 级系统的量子克隆力学”Physical Review A. 64(09)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Wadati: "Statistical mechanics of a one-dimensional delta-function Bose gas"Journal of Physical Society of Japan. 70. 1924-1930 (2001)
M.Wadati:“一维δ函数玻色气体的统计力学”日本物理学会杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WADATI Miki其他文献
WADATI Miki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WADATI Miki', 18)}}的其他基金
Exact Analysis of Bose-Einstein Condensates and its Applications
玻色-爱因斯坦凝聚体的精确分析及其应用
- 批准号:
18540368 - 财政年份:2006
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonlinear Phenomena and their Controls in Bose-Einstein Condensates
玻色-爱因斯坦凝聚中的非线性现象及其控制
- 批准号:
14540373 - 财政年份:2002
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies of Nonlinear Waves and Nonlinear Dynamical Systems
非线性波和非线性动力系统的研究
- 批准号:
09044065 - 财政年份:1997
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B).
Geometrical Models and their Applications
几何模型及其应用
- 批准号:
07640526 - 财政年份:1995
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theory and Applications of Nonlinear Dynamical Systems
非线性动力系统理论与应用
- 批准号:
06044054 - 财政年份:1994
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for international Scientific Research
Random Matrix Theory and its Applications
随机矩阵理论及其应用
- 批准号:
04640381 - 财政年份:1992
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Nonlinear Dynamic of Localized Structures
局部结构的非线性动力学
- 批准号:
03302018 - 财政年份:1991
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Co-operative Research (A)
Nonlinera Dynamics of Complex Systems
复杂系统的非线性动力学
- 批准号:
03044040 - 财政年份:1991
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for international Scientific Research
Exactly Solvable Models and Applications
精确可解模型和应用
- 批准号:
01540310 - 财政年份:1989
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Dynamical Phenomena in Plasma Wave Systems
等离子体波系统中的动力学现象
- 批准号:
63302062 - 财政年份:1988
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Co-operative Research (A)
相似海外基金
Single impurity in a dipolar Bose-Einstein condensate
偶极玻色-爱因斯坦凝聚体中的单一杂质
- 批准号:
2609873 - 财政年份:2021
- 资助金额:
$ 1.66万 - 项目类别:
Studentship
Mathematical physics of one-dimensional Bose-Einstein condensate control
一维玻色-爱因斯坦凝聚态控制的数学物理
- 批准号:
21K03409 - 财政年份:2021
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
SINGLE IMPURITY IN A DIPOLAR BOSE-EINSTEIN CONDENSATE
偶极玻色-爱因斯坦凝聚态中的单一杂质
- 批准号:
2445069 - 财政年份:2020
- 资助金额:
$ 1.66万 - 项目类别:
Studentship
Single Impurity in a Dipolar Bose-Einstein Condensate
偶极玻色-爱因斯坦凝聚体中的单一杂质
- 批准号:
EP/T019913/1 - 财政年份:2020
- 资助金额:
$ 1.66万 - 项目类别:
Research Grant
SINGLE IMPURITY IN A DIPOLAR BOSE-EINSTEIN CONDENSATE
偶极玻色-爱因斯坦凝聚态中的单一杂质
- 批准号:
2895362 - 财政年份:2020
- 资助金额:
$ 1.66万 - 项目类别:
Studentship
Analysis for inhomogeneous Bose-Einstein condensate system including quantum fluctuation of zero-mode
包括零模量子涨落的非均匀玻色-爱因斯坦凝聚体系分析
- 批准号:
19K14619 - 财政年份:2019
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Towards the study of topological defects in 87-Rubidium Bose-Einstein condensate
87-铷玻色-爱因斯坦凝聚体拓扑缺陷的研究
- 批准号:
2126858 - 财政年份:2017
- 资助金额:
$ 1.66万 - 项目类别:
Studentship
Generation of a soliton in a gaseous Bose-EInstein condensate and its application for measuring external fields
气态玻色-爱因斯坦凝聚中孤子的产生及其在测量外场中的应用
- 批准号:
15K05229 - 财政年份:2015
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Observation and control of dynamics under electric dipole-dipole interaction in a Bose Einstein condensate
玻色爱因斯坦凝聚态电偶极-偶极相互作用下动力学的观测与控制
- 批准号:
15K17730 - 财政年份:2015
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Bose Einstein Condensate and random initial data
Bose Einstein Condensate 和随机初始数据
- 批准号:
404762-2011 - 财政年份:2013
- 资助金额:
$ 1.66万 - 项目类别:
Postgraduate Scholarships - Doctoral














{{item.name}}会员




