Studies of Nonlinear Waves and Nonlinear Dynamical Systems
非线性波和非线性动力系统的研究
基本信息
- 批准号:09044065
- 负责人:
- 金额:$ 7.1万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B).
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. For one-dimensional XXZ chain which is known to be quantum integrable spin system, scalar products and correlation functions of the asymmetric case, and spontaneous magnetization of the bounded case are calculated explicitly.2. Static and dynamical properties of Bose-Einstein condensate under magnetic trap are investigated. Stability of D-dimensional nonlinear Schrodinger equation, stability of 2-component boson system, dynamics of boson-fermion system, and ground state and its stability of anisotropic condensate are analysed in detail.3. An exact solution of the Navier-Stokes equations which describes a falling filament is found. The linear stability analysis of the solution gives a criterion for the pinch-off at the end points and the intermediate points.4. Calogero model, Sutherland model and Ruijsenaars model are known as quantum integrable Particle systems. Their algebraic structures, integrabilities and orthogonal bases are clarified in a systematic way.5. By extending the inverse scattering method, discrete multi-component soliton equations and their solutions are obtained. A new type of discrete multi-component nonlinear Schrodinger equation is also obtained.6. For Volterra equation and Bogoyavlensky lattice, algebraic structures and integrabilities are clarified. Further, by discretizing time and dependent variables, integrable cellular automata are constructed.7. A theory of fermionic R-matrix is developed to treat quantum integrable particle systems. This development enables us to study fermion systems without recourse to the Jordin-Wigner transformation. The integrable boundary problem can be treated as well.
1. 对于已知为量子可积自旋系统的一维XXZ链,明确计算了非对称情况下的标量积和相关函数,以及有界情况下的自发磁化。研究了磁阱作用下玻色-爱因斯坦凝聚体的静态和动态性质。详细分析了d维非线性薛定谔方程的稳定性、双组分玻色子系统的稳定性、玻色子-费米子系统的动力学以及各向异性凝聚态的基态及其稳定性。找到了描述落丝的Navier-Stokes方程的精确解。对解的线性稳定性分析给出了端点和中间点掐断的判据。Calogero模型、Sutherland模型和rujsenaars模型被称为量子可积粒子系统。系统地阐明了它们的代数结构、可积性和正交基。通过推广逆散射方法,得到离散多分量孤子方程及其解。得到了一类新的离散多分量非线性薛定谔方程。对于Volterra方程和Bogoyavlensky格,澄清了代数结构和可积性。进一步,通过离散时间和因变量,构造了可积元胞自动机。提出了一种处理量子可积粒子系统的费米子r矩阵理论。这一发展使我们能够研究费米子系统而不需要借助约丁-维格纳变换。可积边界问题也可以处理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H. Morise: "Stability of a Two-Component Bose-Einstein Condensute"Journal of Physical Society of Japan. 68. 1871-1876 (1999)
H. Morise:“二元玻色-爱因斯坦凝聚体的稳定性”日本物理学会杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A. Nishino et al.: "Rodrigues Formula for the Nonsymmetric Madconald Polynomial"Journal of Physical Society of Japan. 68. 701-704 (1999)
A. Nishino 等人:“非对称 Madconald 多项式的罗德里格斯公式”日本物理学会杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T. Tsuchida: "New Integrable systems of derivative nonlinear Schrodinger equations with multiple components"Physics Letters A. 257. 53-64 (1999)
T. Tsuchida:“具有多个分量的导数非线性薛定谔方程的新可积系统”《物理快报》A. 257. 53-64 (1999)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Ujino: "Algebraic Construction of a New Symmetric Orthogonal Basis for the Calogero Model" J.Phys.Soc.Jpn.67. 1-4 (1998)
H.Ujino:“Calogero 模型的新对称正交基的代数构造”J.Phys.Soc.Jpn.67。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A.Nishino: "Symmetric Fock Space and Orthogonal Symmetric Polynomials Associated with the Calogero Model" Chaos,Solitons & Fractals. (印刷中).
A.Nishino:“与 Calogero 模型相关的对称福克空间和正交对称多项式”混沌、孤立子和分形(正在出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WADATI Miki其他文献
WADATI Miki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WADATI Miki', 18)}}的其他基金
Exact Analysis of Bose-Einstein Condensates and its Applications
玻色-爱因斯坦凝聚体的精确分析及其应用
- 批准号:
18540368 - 财政年份:2006
- 资助金额:
$ 7.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonlinear Phenomena and their Controls in Bose-Einstein Condensates
玻色-爱因斯坦凝聚中的非线性现象及其控制
- 批准号:
14540373 - 财政年份:2002
- 资助金额:
$ 7.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonlinear analysis of Bose-Einstein Condensates
玻色-爱因斯坦凝聚体的非线性分析
- 批准号:
11640387 - 财政年份:1999
- 资助金额:
$ 7.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometrical Models and their Applications
几何模型及其应用
- 批准号:
07640526 - 财政年份:1995
- 资助金额:
$ 7.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theory and Applications of Nonlinear Dynamical Systems
非线性动力系统理论与应用
- 批准号:
06044054 - 财政年份:1994
- 资助金额:
$ 7.1万 - 项目类别:
Grant-in-Aid for international Scientific Research
Random Matrix Theory and its Applications
随机矩阵理论及其应用
- 批准号:
04640381 - 财政年份:1992
- 资助金额:
$ 7.1万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Nonlinear Dynamic of Localized Structures
局部结构的非线性动力学
- 批准号:
03302018 - 财政年份:1991
- 资助金额:
$ 7.1万 - 项目类别:
Grant-in-Aid for Co-operative Research (A)
Nonlinera Dynamics of Complex Systems
复杂系统的非线性动力学
- 批准号:
03044040 - 财政年份:1991
- 资助金额:
$ 7.1万 - 项目类别:
Grant-in-Aid for international Scientific Research
Exactly Solvable Models and Applications
精确可解模型和应用
- 批准号:
01540310 - 财政年份:1989
- 资助金额:
$ 7.1万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Dynamical Phenomena in Plasma Wave Systems
等离子体波系统中的动力学现象
- 批准号:
63302062 - 财政年份:1988
- 资助金额:
$ 7.1万 - 项目类别:
Grant-in-Aid for Co-operative Research (A)
相似海外基金
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
- 批准号:
2338663 - 财政年份:2024
- 资助金额:
$ 7.1万 - 项目类别:
Continuing Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
- 批准号:
2423960 - 财政年份:2024
- 资助金额:
$ 7.1万 - 项目类别:
Standard Grant
CAREER: Modeling the Loosening of Bolted Joints due to Nonlinear Dynamics of Structural Assemblies
职业:对结构组件非线性动力学引起的螺栓接头松动进行建模
- 批准号:
2237715 - 财政年份:2023
- 资助金额:
$ 7.1万 - 项目类别:
Standard Grant
BRITE Relaunch: Improving Structural Health by Advancing Interpretable Machine Learning for Nonlinear Dynamics
BRITE 重新启动:通过推进非线性动力学的可解释机器学习来改善结构健康
- 批准号:
2227495 - 财政年份:2023
- 资助金额:
$ 7.1万 - 项目类别:
Standard Grant
Tractor nonlinear dynamics for active safety
用于主动安全的拖拉机非线性动力学
- 批准号:
22H00388 - 财政年份:2022
- 资助金额:
$ 7.1万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Nonlinear Dynamics of Auditory Hair Cells and Efferent Neurons
听觉毛细胞和传出神经元的非线性动力学
- 批准号:
2210316 - 财政年份:2022
- 资助金额:
$ 7.1万 - 项目类别:
Continuing Grant
Nonlinear Dynamics and the Atmosphere
非线性动力学和大气
- 批准号:
575156-2022 - 财政年份:2022
- 资助金额:
$ 7.1万 - 项目类别:
University Undergraduate Student Research Awards
Nonlinear dynamics of shell and plate structures, multi-dimensional and multi-field applications
壳板结构非线性动力学、多维多领域应用
- 批准号:
RGPIN-2018-06609 - 财政年份:2022
- 资助金额:
$ 7.1万 - 项目类别:
Discovery Grants Program - Individual
Analysis and control of quantum nonlinear dynamics using operator theoretic analysis
使用算子理论分析来分析和控制量子非线性动力学
- 批准号:
22K14274 - 财政年份:2022
- 资助金额:
$ 7.1万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Learning Nonlinear Dynamics from Data Using Sparse Optimization and Compressed Sensing
使用稀疏优化和压缩感知从数据中学习非线性动力学
- 批准号:
RGPIN-2018-06135 - 财政年份:2022
- 资助金额:
$ 7.1万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




