保型表現・L関数の研究

自守表示和L函数的研究

基本信息

  • 批准号:
    07740021
  • 负责人:
  • 金额:
    $ 0.64万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
  • 财政年份:
    1995
  • 资助国家:
    日本
  • 起止时间:
    1995 至 无数据
  • 项目状态:
    已结题

项目摘要

GL(2)の保型表現の3つ組から定義されるいわゆるtripe L-functionはP. B. Garrettによる積分表示の発見(1985)により、その研究の道が開かれた。筆者が学位論文で決定したtripe L-functionの極の位置をを用いて保型形式の持ち上げの存在を示すにはtripe L-functionのgamma因子を計算する必要がある。この計算については次のような結果を得て現在論文を執筆中である。(1)zeta積分の最大公約数として定義されたgamma因子はLanglands予想によって予言されていたものと極の位置が完全に一致している。(2)特に不分岐な主系列表現の3つ組、あるいは離散系列表現の3つ組に対応する場合にはLanglands予想によって予言されていたgamma因子はzata積分として表される。(2)において離散系列表現の1つの重みが他の2つの重みより大き場合にはgamma因子の形が異なることが予想されていたがこれを肯定的に解決した。一方、古典群上のEisenstein級数を詳しく研究するには、いわゆるtheta関数との関連を調べることが不可欠である。具体的には、Eisenstein級数の特殊値あるいは留数をtheta関数によって表示するSiegel-Weil型の公式を示すことが重要である。これについては、特殊な場合にEisenstein級数の留数をtheta関数で表すSiegel-Weil型の公式を証明した論文が雑誌に掲載されることが決まっている。さらに一般的な場合にこの公式を拡張することは将来の課題である。その際筆者が計算したEisenstein級数のFourier-Jacobi係数の公式は有用であると思われる。
GL(2) has three sets of definition: tripe L-function P. B. Garrett's Discovery of Integral Representation (1985) It is necessary to determine the position of the pole of tripe L-function and to calculate the gamma factor of tripe L-function. The calculation of this paper is in the process of writing. (1) The maximum common divisor of zeta integrals is defined as the gamma factor. (2)In particular, the main series of performance is divided into three groups, and the discrete series of performance is divided into three groups. (2)In the case of discrete series performance, the gamma factor is different from each other, and the solution is positive. Eisenstein series on a square and classical group are studied in detail. Specific Eisenstein series of special values, theta correlation, expression, Siegel-Weil type of formula, The formula of Siegel-Weil type is proved in this paper. In general, the formula is extended and the future problem is solved. The formula for calculating Fourier-Jacobi coefficients of Eisenstein series is useful.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

池田 保其他文献

耳鼻科医が知っておくワクチンの基本~インバウンド感染対策を含め~
耳鼻喉科医生应该了解的疫苗基础知识 - 包括针对入境感染的措施 -
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    池田 保;田島 明子;松本武浩;福島慎二
  • 通讯作者:
    福島慎二
A study on ICF issues from the perspective of the “social model of disability” and occupational therapy that helps individuals with disabilities participate in society
企业视角下的ICF问题研究
Pull back of the lifting of elliptic modular forms and Miyawaki's conjecture
椭圆模形式的提升的回溯和宫胁猜想
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Takeo Ohsawa;池田 保
  • 通讯作者:
    池田 保
あじさいネットを利用したオンライン診療と患者情報の診療活用(PHR)
使用绣球网的在线医疗和患者信息的临床利用(PHR)
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    池田 保;田島 明子;松本武浩
  • 通讯作者:
    松本武浩

池田 保的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('池田 保', 18)}}的其他基金

Representation theoretic research on periods of automorphic forms
自同构周期的表示论研究
  • 批准号:
    22K03228
  • 财政年份:
    2022
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
2次形式およびエルミート形式の局所密度の研究
二次和埃尔米特形式的局部密度研究
  • 批准号:
    16F16316
  • 财政年份:
    2016
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
保型形式の明示的周期公式と調和解析
自守形式的显式周期公式和调和分析
  • 批准号:
    20654003
  • 财政年份:
    2008
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
保型表現・L関数の表現
自守表示/L函数表示
  • 批准号:
    12740011
  • 财政年份:
    2000
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
保型表現・L関数の研究
自守表示和L函数的研究
  • 批准号:
    08740018
  • 财政年份:
    1996
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
保型表現・保型的L関数の研究
自同构表示和自同构L函数的研究
  • 批准号:
    06740021
  • 财政年份:
    1994
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
保型表現・保型的L関数の研究
自同构表示和自同构L函数的研究
  • 批准号:
    04740033
  • 财政年份:
    1992
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

数論的対象の背後にある幾何学の発見・構築を通じたL関数・ガロア表現の研究
通过发现和构造算术对象背后的几何来研究 L 函数和伽罗瓦表示
  • 批准号:
    23K20782
  • 财政年份:
    2024
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
ゼータ関数・L関数の値分布および零点分布について
关于zeta函数和L函数的值分布和零点分布
  • 批准号:
    24K16907
  • 财政年份:
    2024
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
L関数と篩法による素数分布の研究
利用L函数和筛法研究素数分布
  • 批准号:
    24K06697
  • 财政年份:
    2024
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Selmer群の高次FittingイデアルとL関数
Selmer群的高阶拟合理想和L函数
  • 批准号:
    24K16886
  • 财政年份:
    2024
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
多重Mahler測度と多重L関数を繋ぐ数論的研究
连接多个马勒测度和多个 L 函数的数论研究
  • 批准号:
    24K06649
  • 财政年份:
    2024
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
L関数の特殊値や零点とランダム行列理論の関係
L函数的特殊值与零点与随机矩阵理论的关系
  • 批准号:
    24K06664
  • 财政年份:
    2024
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
L関数の確率論的値分布論
L函数的随机值分布理论
  • 批准号:
    22KJ1263
  • 财政年份:
    2023
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
一般化された跡公式とL関数の研究
广义迹公式和L函数的研究
  • 批准号:
    23KJ1931
  • 财政年份:
    2023
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
保型形式の周期とp進L関数
自守形式和 p 进 L 函数的周期
  • 批准号:
    23K03055
  • 财政年份:
    2023
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
保型L関数の特殊値
自同构L函数的特殊值
  • 批准号:
    22KF0214
  • 财政年份:
    2023
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了