周期写像の研究
周期图的研究
基本信息
- 批准号:07740026
- 负责人:
- 金额:$ 0.51万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Encouragement of Young Scientists (A)
- 财政年份:1995
- 资助国家:日本
- 起止时间:1995 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
単純楕円型特異点の普遍変形に対応する周期積分の逆写像を記述する問題について研究している。これについて、、フラット構造および、その上の結合代数の構造(Dubrobinの言葉でいう、Frobenius構造)を用いて、研究した。これについて、まず、ヤコビ形式の満たす非線形微分方程式を、表現論の結果(単純リー環の表現の、テンソル積分解)を用いることにより、導出した。これを用いて、フラット不変式をヤゴビ形式と、上半平面上の線形常微分方程式の解を用いて記述した。しかるのちにヤコビ形式のみたす線形微分方程式を用いることにより、熱方程式の解である、テ-タ関数との関係を記述した。さらに、モジュラー群の作用を用いることにより、フラット不変式のヤコビアンの満たす線形微分方程式を導出し、これを用いて、アフィンリー環の指標との関係を記述した。また、これから、上記の結合代数の構造も決定できる。これらは、特異点に対応する物理の位相的場の理論における、プレポテンシャルの周期領域からの記述を意味し、さらに、Witten-Dijkgraaf-Verlinde-Verlinde方程式を、保型形式のみたす微分関係式(特別な場合においては、テ-タ級数の満たす、Halphenの微分方程式と同値)として、記述することができた。この結果、部分的に、フラット不変式が非負整数係数で、フーリエ展開できること、プレポテンシャルも整数係数で展開できることがわかる。最近、富山大学の細野氏らにより、カラビ=ヤオ多様体の族について、シグマモデルとよばれる、位相的場の理論についての、プレポテンシャルの計算が、やはり、カラビ=ヤオ多様体の周期からの関数として、記述がされているが、ここでもやはりプレポテンシャルをフーリエ展開したときに整数係数で展開できることがわかり、今後の進展を期待できる類似が発見できた。
The problem of describing periodic integrals and inverse images of single-phase singular points is studied. The structure of associative algebra (Dubrobin structure, Frobenius structure) is studied and applied. The results of the expression theory (pure ring expression, simple integral solution) are derived from the nonlinear differential equation. The solution of linear ordinary differential equation in upper half plane is described in Chinese. A description of the relationship between the linear differential equation and the solution of the thermal equation The linear differential equation of the function of the ring is derived and the index of the ring is described. The structure of associative algebra is determined by the following: The Witten-Dijkgraaf-Verlinde-Verlinde equation, the form-preserving differential relation (in special cases, the differential equation of Haphen, the differential equation of Haphen), and the description of the periodic domain of the field of physical phase corresponding to the special point. The result of this is that the partial coefficient is not a negative integer coefficient, and the partial coefficient is a negative integer coefficient. Recently, Toyama University Hosono's field theory, calculation of phase field theory Looking forward to similar developments
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
佐竹 郁夫其他文献
佐竹 郁夫的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('佐竹 郁夫', 18)}}的其他基金
周期と Coxeter 変換から見た Frobenius 構造
从周期和考克塞特变换看弗罗贝尼乌斯结构
- 批准号:
22K03295 - 财政年份:2022
- 资助金额:
$ 0.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
原始形式と位相的漸化式
原形和拓扑递推公式
- 批准号:
18K03281 - 财政年份:2018
- 资助金额:
$ 0.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
楕円ルート系と保形形式
椭圆形的根系和不定形的形状
- 批准号:
08740023 - 财政年份:1996
- 资助金额:
$ 0.51万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
周期写像の研究
周期图的研究
- 批准号:
06221249 - 财政年份:1994
- 资助金额:
$ 0.51万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
ヤコビ形式によるフラット不変式の構成
雅可比形式的平面不变量的构造
- 批准号:
05740024 - 财政年份:1993
- 资助金额:
$ 0.51万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
相似海外基金
Study of Fourier-Jacobi type spherical functions for Siegel modular forms of degree two and its application
二次Siegel模形式的Fourier-Jacobi型球函数研究及其应用
- 批准号:
24540022 - 财政年份:2012
- 资助金额:
$ 0.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of Fourier-Jacobi type spherical functions for Siegel modular forms of degree two and its application
二次Siegel模形式的Fourier-Jacobi型球函数研究及其应用
- 批准号:
21740020 - 财政年份:2009
- 资助金额:
$ 0.51万 - 项目类别:
Grant-in-Aid for Young Scientists (B)