On the roles of generalized linear CM modules in commutative ring theory

广义线性CM模在交换环理论中的作用

基本信息

  • 批准号:
    09640025
  • 负责人:
  • 金额:
    $ 1.92万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1998
  • 项目状态:
    已结题

项目摘要

We have studied the generalization and the existence of linear maximal Cohen-Macaulay modules. As a result, we have proved some generalization theorem for linear maximal Cohen-Macaulay modules, and showed several properties of surjective Buchsbaum modules, the notion of which is a generalization of that of the linear Buchsbaum modules.A finitely generated module M over a local ring A is called a linear Cohen-Macaulay A-module if the associated graded module of M is a graded Cohen-Macaulay module which has a graded linear resolution. The above definition of linear Cohen-Macaulay module is equivalent to the following condition : the minimal number of generators of M is equal to the multiplicity of M.The last condition enables us to define a generalization of linear Cohen-Macaulay modules. In fact, the head-investigator and the other investigators have generalized of linear maximal Cohen-Macaulay modules to linear maximal Buchsbaum modules in terms of I-invariant, which is a important invariant for Buchsbaum modules. One of our main results in this investigation is a generalization theorem for linear Buchsbaum modules (thus linear Cohen-Macaulay modules) ; using the notion of homological degree introduced by Vasconcelos, we have removed the above obstruction. On the other hand, since it is hard to deal with homological degrees, the problem with generalization of linear Buchsbaum modules using another invariants is left us.Furthermore, throughout this investigation, we noticed that research of singularities is important and so that we began to study singularities of local rings with positive characteristic. We are now preparing papers about these research for publishing with Kei-ichi Watanabe (Nihon Univ.) .
研究了线性极大Cohen-Macaulay模的存在性和推广。证明了线性极大Cohen-Macaulay模的一些推广定理,并给出了满射Buchsbaum模的一些性质,满射Buchsbaum模的概念是线性Buchsbaum模的推广.局部环A上的一个n阶生成模M称为线性Cohen-Macaulay A-模,如果M的伴随分次模是一个具有分次线性分解的分次Cohen-Macaulay模.线性Cohen-Macaulay模的上述定义等价于以下条件:M的最小生成元数等于M的重数。最后一个条件使我们能够定义线性Cohen-Macaulay模的一个推广。实际上,主要研究者和其他研究者已经将线性极大Cohen-Macaulay模推广到了线性极大Buchsbaum模上,其中I-不变量是Buchsbaum模的一个重要不变量。我们的主要结果之一是线性Buchsbaum模(因此线性Cohen-Macaulay模)的推广定理;使用Vasconcelos引入的同调度概念,我们消除了上述障碍。另一方面,由于同调度的处理比较困难,使得线性Buchsbaum模用另一个不变量进行推广的问题成为了一个遗留问题。此外,在整个研究过程中,我们注意到奇异性的研究是非常重要的,于是我们开始研究具有正特征的局部环的奇异性。我们正在准备与日本大学渡边惠一合作发表的论文。.

项目成果

期刊论文数量(40)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Soichi Okada: "Applications of minor summation formulas to rectangular-shaped representations of classical groups" J.Algebra. 205. 337-367 (1998)
Soichi Okada:“小求和公式在经典群的矩形表示中的应用”J.代数。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Soichi Okada: "The number of rhombus tilings of a “punctured" hexagon and the mimor summation formula" Adv.in Appl.Math.21. 381-404 (1998)
Soichi Okada:““穿孔”六边形的菱形拼接数和 mimor 求和公式”Adv.in Appl.Math.21 (1998)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Soichi Okada: "The number of rhombus tilings of a "punctured" hexagon and the minor summation formula" Adv.in Appl. Math.21. 381-404 (1998)
Soichi Okada:““穿孔”六边形的菱形拼贴数量和小求和公式”Adv.in Appl。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Ken-ichi Yoshida: "Confiniteness of local cohomology modules for ideals of dimension one" Nagoya Math.J.24-1. 179-191 (1997)
Ken-ichi Yoshida:“一维理想的局部上同调模的有限性”Nagoya Math.J.24-1。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Shigeru Mukai: "Duality of polarized K3 surfaces" in Proceedings of Euroconference on Algebraic Geometry, (K.Hulek and M.Reid et al.). 107-122 (1998)
Shigeru Mukai:《欧洲代数几何会议录》中的“极化 K3 表面的对偶性”(K.Hulek 和 M.Reid 等人)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YOSHIDA Ken-ichi其他文献

YOSHIDA Ken-ichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YOSHIDA Ken-ichi', 18)}}的其他基金

Research on rational singularities and almost Gorenstein blow-up algebras
有理奇点和几乎Gorenstein爆炸代数的研究
  • 批准号:
    16K05110
  • 财政年份:
    2016
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on sudden cardiovascular death in animal model of sleep apnea syndrome
睡眠呼吸暂停综合征动物模型心血管猝死的研究
  • 批准号:
    23249038
  • 财政年份:
    2011
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Metabolism of inositol stereoisomers in a thermophile,Geobacillus kaustophilusHTA426
嗜热土芽孢杆菌 HTA426 中肌醇立体异构体的代谢
  • 批准号:
    22310130
  • 财政年份:
    2010
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research of ring-invariants associated to powers of ideals
与理想幂相关的环不变量的研究
  • 批准号:
    22540047
  • 财政年份:
    2010
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on the molecular mechanism underlying sudden cardiac deaths due to toxic substanses, ischemia and emotional stress
有毒物质、缺血、情绪应激导致心源性猝死的分子机制研究
  • 批准号:
    20390193
  • 财政年份:
    2008
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research of multiplier ideals and tight closures from viewpoint of commutative algebra and computational algebra
从交换代数和计算代数的角度研究乘子理想和紧闭集
  • 批准号:
    19340005
  • 财政年份:
    2007
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research on the contribution of oxidative stress to the pathogenesis of cardiovascular diseases associated with life-styles
氧化应激在生活方式相关心血管疾病发病机制中的作用研究
  • 批准号:
    18390204
  • 财政年份:
    2006
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study into the Dynamism and Fluctuational Factors of Foreign Exchange Rates
外汇汇率动态及波动因素研究
  • 批准号:
    15530225
  • 财政年份:
    2003
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on cell injury due to Carbon Monoxide and Nitric Oxide under ischemia or shock
缺血或休克时一氧化碳和一氧化氮所致细胞损伤的研究
  • 批准号:
    14370152
  • 财政年份:
    2002
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
On ring-theoretical properties of blow-up rings over singular points in positive characteristic
正特性奇点上爆炸环的环理论性质
  • 批准号:
    14540020
  • 财政年份:
    2002
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了