ON THE GENERALIZED FOURIER TRANSFORMS ASSOCIATED RELATIVISTIC SCHRODINGER OPERATORS
关于广义傅立叶变换相关相对论薛定谔算子
基本信息
- 批准号:09640212
- 负责人:
- 金额:$ 1.92万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is an attempt to make an approach to spectral and scattering theory for relativistic Schrodinger operators. The aim of the project is to investigate the generalized Fourier transforms through analyzing the generalized eigenfunctions in great detail. Below is what has been shown in this project.1. Completeness of the generalized eigenfunctions (the massive case)It is shown that the family of generalized eigenfunctions of the relativistic Schrodiger operator is complete in the subspace of continuity.2. Completeness of the generalized eigenfunctions (the massless case)The same fact as in Result 1 is shown. The point is a successful treatment of the difficulties which are specific to this case.3. A characterization of the generalized eigenfunctions (the massless and 3-dimensional case)Based on an explicit computation of the resolvent kernel of the square-root of the minus Laplacian, the generalized eigenfunctions are characterized as the unique solutions to the Lippmaun-Schwinger type integral equations4. The action of the square-root of the minus Laplacian on distributionsSharp estimates on the square-root of minus Laplacian in weighted Sobolev spaces and the radiation conditions are derived.In connection with Result 3, we have recognized that it is possible to make detailed analysis on the regularity of the generalized eigenfunctions as well as on the difference of the generalized eigenfunctions from the plane wave solutions. With this respect, we still continue the research. Result 4 was not contained in our initial plan, although it is closey related with the aim of our project. It seems, however, to bear an important aspect of mathematics which has been ignored so far. For this reason, we continue making research on the action of the square-root of the minus Laplacian, and shall try to extend the result.
本项目是对相对论性薛定谔算子的光谱和散射理论进行探讨的一种尝试。本课题的目的是通过对广义特征函数的详细分析来研究广义傅里叶变换。下面是在这个项目中所显示的。广义本征函数的完备性(质量情况)证明了相对论性Schrodiger算子的广义本征函数族在连续子空间上是完备的。广义本征函数的完备性(无质量情况下)证明了与结果1相同的事实。关键是成功地处理了这个案例所特有的困难。广义本征函数的表征(无质量和三维情况)基于负拉普拉斯平方根的解核的显式计算,将广义本征函数表征为Lippmaun-Schwinger型积分方程的唯一解4。给出了负拉普拉斯算子的平方根对分布的作用,以及加权Sobolev空间中负拉普拉斯算子的平方根的夏普估计和辐射条件。结合结果3,我们认识到可以详细分析广义本征函数的规律性以及广义本征函数与平面波解的差异。在这方面,我们仍在继续研究。结果4并没有包含在我们最初的计划中,虽然它与我们项目的目的密切相关。然而,它似乎包含了迄今为止一直被忽视的数学的一个重要方面。因此,我们将继续研究负拉普拉斯式的平方根的作用,并尝试推广这一结果。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
保城 寿彦: "Mourre's method and smoothing properties of dispersive equations" Communications in Mathematical Physics. (掲載予定). (1999)
Toshihiko Hojo:“Mourre 方法和色散方程的平滑特性”《数学物理学通讯》(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Chris Pladdy: "Radiation Condition for Dirac Operators"Journal of Mathematics of Kyoto University. 37. 567-584 (1997)
Chris Pladdy:“狄拉克算子的辐射条件”京都大学数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Tomio Umeda: "Eigenfunction Expansions Associated with Relativistic Schrodinger Operators"Conference Proceedings of Partial Differential Equations 2000.
Tomio Umeda:“与相对论薛定谔算子相关的本征函数展开”2000 年偏微分方程会议论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Toshihiko Hoshiro: "On the Estimates for Helmholtz Operators"Tsukuba Journal of Mathematics. 23. 131-149 (1999)
Toshihiko Hoshiro:“关于亥姆霍兹算子的估计”筑波数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
UMEDA Tomio其他文献
UMEDA Tomio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('UMEDA Tomio', 18)}}的其他基金
SPECTRALANALYSISOFQUANTUMHAMILTONIANSATTHRESHODENERGIES
量子汉密尔顿能量谱分析
- 批准号:
21540193 - 财政年份:2009
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generalized eigenfunctions of relativistic Schroedinger operators, pseudo-differential operators and their related topics
相对论薛定谔算子、伪微分算子的广义本征函数及其相关主题
- 批准号:
15540178 - 财政年份:2003
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Academic Research on Project Management
项目管理学术研究
- 批准号:
11680451 - 财政年份:1999
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Planning, Designing, and Operation of Autonomous Decentralized Production Systems
自主分散生产系统的规划、设计和运营
- 批准号:
06680390 - 财政年份:1994
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
An Analisis of Autonomous Deceterlized Mechanizm in Corporate Organizations
企业组织自治非自治机制分析
- 批准号:
03832004 - 财政年份:1991
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Development of a new EBSD analysis method combining dynamical scattering theory and machine learning
结合动态散射理论和机器学习开发新的 EBSD 分析方法
- 批准号:
23H01276 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Modern field and scattering theory for fundamental physics
基础物理的现代场和散射理论
- 批准号:
2887909 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别:
Studentship
microscopic foundation of the shell model based on the scattering theory and the many-body perturbation theory
基于散射理论和多体摄动理论的壳模型微观基础
- 批准号:
23K03420 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies of multi-dimensional quantum walks by spectral scattering theory
光谱散射理论研究多维量子行走
- 批准号:
23K03224 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric Scattering Theory, Resolvent Estimates, and Wave Asymptotics
几何散射理论、分辨估计和波渐近学
- 批准号:
DE230101165 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别:
Discovery Early Career Researcher Award
Novel Sampling Methods for Electromagnetic Inverse Scattering Theory
电磁逆散射理论的新颖采样方法
- 批准号:
2208293 - 财政年份:2022
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
Geometric Scattering Theory, Resolvent Estimates, and Wave Asymptotics
几何散射理论、分辨估计和波渐近学
- 批准号:
2204322 - 财政年份:2022
- 资助金额:
$ 1.92万 - 项目类别:
Continuing Grant
Singular integral operators and special functions in scattering theory
散射理论中的奇异积分算子和特殊函数
- 批准号:
21K03292 - 财政年份:2021
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Spectral and scattering theory with microlocal and semiclassical methods
使用微局域和半经典方法的光谱和散射理论
- 批准号:
21K03276 - 财政年份:2021
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Scattering theory and continuum limits of discrete Schrodinger operators
离散薛定谔算子的散射理论和连续谱极限
- 批准号:
21K20337 - 财政年份:2021
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Research Activity Start-up














{{item.name}}会员




